Consider a cuboid of dimensions a × b × c, where a
b
c.
The total number of unit cubes is abc.
The total number of internal unit cubes is (a − 2)(b − 2)(c − 2).
Hence we seek positive integers a
b
c such that abc = 2(a − 2)(b − 2)(c − 2).(1)
Dividing by abc, we obtain (1 − 2/a)(1 − 2/b)(1 − 2/c) = ½.
Since (1 − 2/a)
(1 − 2/b)
(1 − 2/c), we have 1 − 2/a
cuberoot(½), and so a
2/(1 − cuberoot(½)).
Therefore a
9.
This places a precise bound on the intuition that a cuboid with equal numbers of internal and external cubes cannot be "too large."
Expanding (1), we obtain abc = 2(abc − 2(ab + bc + ca) + 4(a + b + c) − 8).
Hence abc − 4(ab + bc + ca) + 8(a + b + c) − 16 = 0.
Geometrically, it's clear a > 3. Now consider separately cases a = 4 to 9.
−8(b + c) + 16 = 0
Therefore b + c = 2, contradicting a
b
bc − 12(b + c) + 24 = 0
(b − 12)(c − 12) = 120
Factorizing 120: b − 12 = (1, 2, 3, 4, 5, 6, 8, 10), c − 12 = (120, 60, 40, 30, 24, 20, 15, 12)
Therefore (b,c) = {(13,132), (14,72), (15,52), (16,42), (17,36), (18,32), (20,27), (22,24)}
2bc − 16(b + c) + 32 = 0
bc − 8(b + c) + 16 = 0
(b − 8)(c − 8) = 48
Therefore (b,c) = {(9,56), (10,32), (11,24), (12,20), (14,16)}
3bc − 20(b + c) + 40 = 0
9bc − 60(b + c) + 120 = 0
(3b − 20)(3c − 20) = 280
Therefore (b,c) = {(7,100), (8,30), (9,20), (10,16)}
4bc − 24(b + c) + 48 = 0
bc − 6(b + c) + 12 = 0
(b − 6)(c − 6) = 24
Therefore (b,c) = {(8,18), (9,14), (10,12)}
5bc − 28(b + c) + 56 = 0
25bc − 140(b + c) + 280 = 0
(5b − 28)(5c − 28) = 504
This has no solutions with b
9.
Therefore there are 20 cuboids with number of internal cubes equal to number of external cubes; shown above; summarized below.
| a | b | c | # external cubes |
|---|---|---|---|
| 5 | 13 | 132 | 4290 |
| 5 | 14 | 72 | 2520 |
| 5 | 15 | 52 | 1950 |
| 5 | 16 | 42 | 1680 |
| 5 | 17 | 36 | 1530 |
| 5 | 18 | 32 | 1440 |
| 5 | 20 | 27 | 1350 |
| 5 | 22 | 24 | 1320 |
| 6 | 9 | 56 | 1512 |
| 6 | 10 | 32 | 960 |
| 6 | 11 | 24 | 792 |
| 6 | 12 | 20 | 720 |
| 6 | 14 | 16 | 672 |
| 7 | 7 | 100 | 2450 |
| 7 | 8 | 30 | 840 |
| 7 | 9 | 20 | 630 |
| 7 | 10 | 16 | 560 |
| 8 | 8 | 18 | 576 |
| 8 | 9 | 14 | 504 |
| 8 | 10 | 12 | 480 |
Source: Inspired by the Peculiar Perimeter on mathschallenge.net