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Chapter 1

Introduction and Notes

This is a (slowly) growing collection of dice-related mathematical problems, with accompanying solu-
tions. Some are simple exercises suitable for beginners, while others require more sophisticated techniques.

Many dice problems have an advantage over some other problems of probability in that they can be
investigated experimentally. This gives these types of problems a certain helpful down-to-earth feel.

Please feel free to comment, criticize, or contribute additional problems.

1.0.1 What are dice?

In the real world, dice (the plural of die) are polyhedra made of plastic, wood, ivory, or other hard
material. Each face of the die is numbered, or marked in some way, so that when the die is cast onto a
smooth, flat surface and allowed to come to rest, a particular number is specified.

Mathematically, we can consider a die to be a random variable that takes on only finitely many distinct
values. Usually, these values will constitute a set of positive integers 1,2, ..., n; in such cases, we will refer
to the die as n-sided.

1.0.2 Terminology

A fair die is one for which each face appears with equal likelihood. A non-fair die is called fixed. The
phrase standard die will refer to a fair, six-sided die, whose faces are numbered one through six. If not
otherwise specified, the term die will refer to a standard die.



Chapter 2

Problems

2.1

10.
11.
12.
13.
14.

Standard Dice

. On average, how many times must a 6-sided die be rolled until a 6 turns up?

On average, how many times must a 6-sided die be rolled until a 6 turns up twice in a row?

. On average, how many times must a 6-sided die be rolled until the sequence 65 appears (i.e., a 6

followed by a 5)?

On average, how many times must a 6-sided die be rolled until there are two rolls in a row that differ
by 1 (such as a 2 followed by a 1 or 3, or a 6 followed by a 5)? What if we roll until there are two
rolls in a row that differ by no more than 1 (so we stop at a repeated roll, too)?

. We roll a 6-sided die n times. What is the probability that all faces have appeared?

We roll a 6-sided die n times. What is the probability that all faces have appeared in order, in some
six consecutive rolls (i.e., what is the probability that the subsequence 123456 appears among the n
rolls)?

. We roll a 6-sided die n times. What is the probability that all faces have appeared in some order in

some six consecutive rolls? What is the expected number of rolls until such a sequence appears?

. Person A rolls n dice and person B rolls m dice. What is the probability that they have a common

face showing (e.g., person A rolled a 2 and person B also rolled a 2, among all their dice)?

On average, how many times must a 6-sided die be rolled until all sides appear at least once? What
about for an n-sided die?

On average, how many times must a 6-sided die be rolled until all sides appear at least twice?

On average, how many times must a pair of 6-sided dice be rolled until all sides appear at least once?
Suppose we roll n dice. What is the expected number of distinct faces that appear?

Suppose we roll n dice and keep the highest one. What is the distribution of values?

Suppose we can roll a 6-sided die up to n times. At any point we can stop, and that roll becomes our
“score”. Our goal is to get the highest possible score, on average. How should we decide when to
stop?
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15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

How many dice must be rolled to have at least a 95% chance of rolling a six?

How many dice must be rolled to have at least a 95% chance of rolling a one and a two? What about
a one, a two, and a three? What about a one, a two, a three, a four, a five and a six?

How many dice should be rolled to maximize the probability of rolling exactly one six? two sixes? n
sixes?

Suppose we roll a fair die 100 times. What is the probability of a run of at least 10 sixes?

Suppose we roll a fair die until some face has appeared twice. For instance, we might have a run of
rolls 12545 or 636. How many rolls on average would we make? What if we roll until a face has
appeared three times?

Suppose we roll a fair die 10 times. What is the probability that the sequence of rolls is non-decreasing
(i.e., the next roll is never less than the current roll)?

Suppose a pair of dice are thrown, and then thrown again. What is the probability that the faces
appearing on the second throw are the same as the first?

What if three dice are used? Or six?

What is the most probable: rolling at least one six with six dice, at least two sixes with twelve dice,
or at least three sixes with eighteen dice? (This is an old problem, frequently connected with Isaac
Newton.)

Suppose we roll n dice, remove all the dice that come up 1, and roll the rest again. If we repeat this
process, eventually all the dice will be eliminated. How many rolls, on average, will we make? Show,
for instance, that on average fewer than O(logn) throws occur.

Suppose we roll a die 6k times. What is the probability that each possible face comes up an equal
number of times (i.e., k times)? Find an asymptotic expression for this probability in terms of k.

Call a “consecutive difference” the absolute value of the difference between two consecutive rolls
of a die. For example, the sequence of rolls 14351 has the corresponding sequence of consecutive
differences 3, 1, 2, 4. What is the expected number of times we need to roll a die until all 6 consecutive
differences have appeared?

Suppose we roll six dice repeatedly as long as there are repetitions among the rolled faces, rerolling
all non-distinct face dice. For example, our first roll might give 112245, in which case we would keep
the 45 and roll the other four. Suppose those four turn up 1346 so the set of faces is 134456, and so we
re-roll the two 4 dice, and continue. What is the expected number of rolls until all faces are distinct?

2.2 Dice Sums

Show that the probability of rolling 14 is the same whether we throw 3 dice or 5 dice. Are there other
examples of this phenomenon?

Show that the probability of rolling a sum of 9 with a pair of 5-sided dice is the same as rolling a sum
of 9 with a pair of 10-sided dice. Are there other examples of this phenomenon? Can we prove there
are infinitely many such?
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29.
30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Suppose we roll n dice and sum the highest 3. What is the probability that the sum is 18?
Four fair, 6-sided dice are rolled. The highest three are summed. What is the distribution of the sum?

Three fair, n-sided dice are rolled. What is the probability that the sum of two of the faces rolled
equals the value of the other rolled face?

A fair, n-sided die is rolled until a roll of k or greater appears. All rolls are summed. What is the
expected value of the sum?

A pair of dice is rolled repeatedly. What is the expected number of rolls until all eleven possible sums
have appeared? What if three dice are rolled until all sixteen possible sums have appeared?

A die is rolled repeatedly and summed. What can you say about the expected number of rolls until
the sum is greater than or equal to n?

A die is rolled repeatedly and summed. Show that the expected number of rolls until the sum is a
multiple of n is n.

A fair, n-sided die is rolled and summed until the sum is at least n. What is the expected number of
rolls?

A die is rolled and summed repeatedly. What is the probability that the sum will ever be a given value
x? What is the limit of this probability as x — co?

A die is rolled and summed repeatedly. Let x be a positive integer. What is the probability that the
sum will ever be x or x 4+ 1? What is the probability that the sum will ever be x, z + 1, or z + 2?7 Etc.?

A die is rolled once; call the result N. Then N dice are rolled once and summed. What is the
distribution of the sum? What is the expected value of the sum? What is the most likely value?

What the heck, take it one more step: roll a die; call the result N. Roll N dice once and sum them;
call the result M. Roll M dice once and sum. What’s the distribution of the sum, expected value,
most likely value?

A die is rolled once. Call the result N. Then, the die is rolled N times, and those rolls which are
equal to or greater than /N are summed (other rolls are not summed). What is the distribution of the
resulting sum? What is the expected value of the sum?

Suppose n six-sided dice are rolled and summed. For each six that appears, we sum the six, and reroll
that die and sum, and continue to reroll and sum until we roll something other than a six with that die.
What is the expected value of the sum? What is the distribution of the sum?

A die is rolled until all sums from 1 to x are attainable from some subset of rolled faces. For example,
if x = 3, then we might roll until a 1 and 2 are rolled, or until three 1s appear, or until two 1s and a 3.
What is the expected number of rolls?

How long, on average, do we need to roll a die and sum the rolls until the sum is a perfect square
(1,4,9,16,...)?

How long, on average, do we need to roll a die and sum the rolls until the sum is prime? What if we
roll until the sum is composite?

What is the probability that, if we roll two dice, the product of the faces will start with the digit *1’?
What if we roll three dice, or, ten dice? What is going on?
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46.

47.

48.

49.

50.
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52.

53.

54.

55.

56.

57.

2.3 Non-Standard Dice

Show that the probability of rolling doubles with a non-fair (“fixed”) die is greater than with a fair die.

Is it possible to have a non-fair six-sided die such that the probability of rolling 2, 3,4, 5, and 6 is the
same whether we roll it once or twice (and sum)? What about for other numbers of sides?

Find a pair of 6-sided dice, labelled with positive integers differently from the standard dice, so that
the sum probabilities are the same as for a pair of standard dice.

Is it possible to have two non-fair n-sided dice, with sides numbered 1 through n, with the property
that their sum probabilities are the same as for two fair n-sided dice?

Is it possible to have two non-fair 6-sided dice, with sides numbered 1 through 6, with a uniform sum
probability? What about n-sided dice?

Suppose that we renumber three fair 6-sided dice (A, B, C) as follows: A = {2,2,4,4,9,9},.B =
{1,1,6,6,8,8},and C = {3,3,5,5,7,7}.

(a) Find the probability that die A beats die B; die B beats die C'; die C beats die A.
(b) Discuss.

Find every six-sided die with sides numbered from the set {1,2,3,4,5,6} such that rolling the die
twice and summing the values yields all values between 2 and 12 (inclusive). For instance, the die
numbered 1,2,4,5,6,6 is one such die. Consider the sum probabilities of these dice. Do any of them
give sum probabilities that are “more uniform” than the sum probabilities for a standard die? What
if we renumber two dice differently - can we get a uniform (or more uniform than standard) sum
probability?

If we roll a standard die twice and sum, the probability that the sum is prime is % = % If we
renumber the faces of the die, with all faces being different, what is the largest probability of a prime

sum that can be achieved?

Let’s make pairs of dice that only sum to prime values. If we minimize the sum of all the values on
the faces, what dice do we get for 2-sided dice, 3-sided dice, etc.?

Show that you cannot have a pair of dice with more than two sides that only gives sums that are
Fibonacci numbers.

2.4 Games with Dice

Two players each roll two dice, first player A, then player B. If player A rolls a sum of 6, they win. If
player B rolls a sum of 7, they win. They take turns, back and forth, until someone wins. What is the
probability that player A wins?

In the previous problem, we find out that the game is not fair. Are there sum targets for player A and
player B that would make the game fair? What about using a different number of dice, or allowing
targets to include more than one sum?
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59.

60.

61.

62.

63.

64.

65.

Two players each roll two dice. Player A is trying to roll a sum of 6, player B is trying to roll a
sum of 7. Player A starts, and rolls once. Then Player B rolls twice, then Player A rolls twice, and
they repeat, both players rolling twice in succession until someone rolls their target sum. What is the
probability of winning for each player?

Two players each roll a die. Player 1 rolls a fair m-sided die, while player 2 rolls a fair n sided die,
with m > n. The winner is the one with the higher roll. What is the probability that Player 1 wins?
What is the probability of a tie? If the players continue rolling in the case of a tie until they do not tie,
which player has the higher probability of winning? If the tie means a win for Player 1 (or player 2),
what is their probability of winning?

Two players each start with 12 tokens. They roll three dice until the sum is either 11 or 14. If the sum
is 14, player A gives a token to player B; if the sum is 11, player B gives a token to player A. They
repeat this process until one player, the winner, has all the tokens. What is the probability that player
A wins?

Two players each start a game with a score of zero, and they alternate rolling dice once to add to their
scores. Player A rolls three six-sided dice on each turn, while player B always gets 11 points on their
turn. If the starting player is chosen by the toss of a coin, what is the probability that player A will be
the first to 100 points?

Craps The game of craps is perhaps the most famous of all dice games. The player begin by
throwing two standard dice. If the sum of these dice is 7 or 11, the player wins. If the sum is 2,3 or
12, the player loses. Otherwise, the sum becomes the player’s point. The player continues to roll until
either the point comes up again, in which case the player wins, or the player throws 7, in which case
they lose. The natural question is: what is a player’s probability of winning?

Non-Standard Craps We can generalize the games of craps to allow dice with other than six
sides. Suppose we use two (fair) n-sided dice. Then we can define a game analogous to craps in the
following way. The player rolls two n-sided dice. If the sum of these dice is n 4+ 1 or 2n — 1, the
player wins. If the sum of these dice is 2, 3 or 2n, then the player loses. Otherwise the sum becomes
the player’s point, and they win if they roll that sum again before rolling n + 1. We may again ask:
what is the player’s probability of winning?

Yahtzee There are many probability questions we may ask with regard to the game of Yahtzee. For
starters, what is the probability of rolling, in a single roll,

(a) Yahtzee

(b) Four of a kind (but not Yahtzee)

(c) Three of a kind (but not four of a kind or Yahtzee)

(d) A full house

(e) A long straight

(f) A small straight

More Yahtzee What is the probability of getting Yahtzee, assuming that we are trying just to get
Yahtzee, we make reasonable choices about which dice to re-roll, and we have three rolls? That is,
assume we’re in the situation where all we have left to get in a game of Yahtzee is Yahtzee, so that all
other outcomes are irrelevant.
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66.

67.

68.

69.

Drop Dead In the game of Drop Dead, the player starts by rolling five standard dice. If there are
no 2’s or 5’s among the five dice, then the dice are summed and this is the player’s score. If there are
2’s or 5’s, these dice become “dead” and the player gets no score. In either case, the player continues
by rolling all non-dead dice, adding points onto the score, until all dice are dead.

For example, the player might roll {1, 3,3, 4,6} and score 17. Then they roll all the dice again and get
{1,1,2,3,5} which results in no points and two of the dice dying. Rolling the three remaining dice,
they might get {2, 3,6} for again no score, and one more dead die. Rolling the remaining two they
might get {4,6} which gives them 10 points, bringing the score to 27. They roll the two dice again,
and get {2, 3} which gives no points and another dead die. Rolling the remaining die, they might get
{3} which brings the score to 30. Rolling again, they get {5} which brings this player’s round to an
end with 30 points.

Some natural questions to ask are:

(a) What is the expected value of a player’s score?

(b) What is the probability of getting a score of 0? 1? 20? etc.

Threes In the game of Threes, the player starts by rolling five standard dice. In the game, the threes
count as zero, while the other faces count normally. The goal is to get as low a sum as possible. On
each roll, at least one die must be kept, and any dice that are kept are added to the player’s sum. The
game lasts at most five rolls, and the score can be anywhere from 0 to 30.

For example a game might go like this. On the first roll the player rolls
2-3-3-4-6

The player decides to keep the 3s, and so has a score of zero. The other three dice are rolled, and the
result is
1-5-5

Here the player keeps the 1, so their score is 1, and re-rolls the other two dice. The result is
1-2

Here, the player decides to keep both dice, and their final score is 4.

If a player plays optimally (i.e., using a strategy which minimizes the expected value of their score),
what is the expected value of their score?

Pig In the game of Pig, two players take turns rolling a die. On a turn, a player may roll the die as
many times as they like, provided they have not thrown a one. If they end their turn before rolling a
one, their turn score is the sum of rolls for that turn. If they roll a one, their turn score is zero. At the
end of the turn, their turn score is added to the player’s total score. The first player to reach 100 points
wins.

Let’s consider the strategy for playing this game in which the player will roll until their turn score is
at least M. What value of M will maximize their expected turn score? What is the expected value?

Suppose we play a game with a die where we roll and sum our rolls. We can stop any time and take
the sum as our score, but if we roll a face we’ve rolled before then we lose everything. What strategy
will maximize our expected score?
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(Same as previous game, but with two dice.) Suppose we play a game with two dice where we roll
and sum our rolls. We can stop any time and take the sum as our score, but if we roll a sum we’ve
rolled before then we lose everything. What strategy will maximize our expected score?

Suppose we play a game with a die where we roll and sum our rolls. We can stop any time and take
the sum as our score, but if we roll the same face twice in a row we lose everything. What strategy
will maximize our expected score?

Suppose we play a game with a die where we roll and sum our rolls as long as we keep rolling larger
values. For instance, we might roll a sequence like 1-3-4 and then roll a 2, so our sum would be 8. If
we roll a 6 first, then we’re through and our sum is 6. Three questions about this game:

(a) What is the expected value of the sum?

(b) What is the expected value of the number of rolls?

(c) If the game is played with an n-sided die, what happens to the expected number of rolls as n

approaches infinity?

Suppose we play a game with a die where we roll and add our rolls to our total when the face that
appears has not occurred before, and subtract it from our total if it has.
For example, if we rolled the sequence 1, 3, 4, 3, our corresponding totals would be 1,4, 8, 5.
We can stop any time and take the total as our score. What strategy should we employ to maximize
our expected score?
Suppose we roll a single die, repeatedly if we like, and sum. We can stop at any point, and the sum
becomes our score; however, if we exceed 10, our score is zero.

What should our strategy be to maximize the expected value of our score? What is the expected score
with this optimal strategy?

What about limits besides 10?

Suppose we play a game with a die where we roll and sum our rolls. We can stop any time, and the
sum is our score. However, if our sum is ever a multiple of 10, our score is zero, and our game is over.
What strategy will yield the greatest expected score? What about the same game played with values
other than 10?

Suppose we play a game with a die in which we use two rolls of the die to create a two-digit number.
The player rolls the die once and decides which of the two digits they want that roll to represent. Then,
the player rolls a second time and this determines the other digit. For instance, the player might roll a
5, and decide this should be the “tens” digit, and then roll a 6, so their resulting number is 56.

What strategy should be used to create the largest number on average? What about the three digit
version of the game?

10



Chapter 3

Discussion, Hints, and Solutions

3.1

1.

Single Die Problems

On average, how many times must a 6-sided die be rolled until a 6 turns up?

This problem is asking for the expected number of rolls until a 6 appears. Let X be the random
variable representing the number of rolls until a 6 appears. Then the probability that X = 1is 1/6;
the probability that X = 2is (5/6)(1/6) = 5/36. In general, the probability that X = k is

k—1
5 1
- - 3.1
(3) G
since, in order for X to be k, there must be £ — 1 rolls which can be any of the numbers 1 through 5,
and then a 6, which appears with probability 1/6.

We seek the expectation of X. This is defined to be
[e.e]
E=) nP(X =n) (3.2)
n=1

where P(X = n) is the probability that X takes on the value n. Thus,

0 /5\"'1 6 1 [/5\"

=6. (3.4)

Thus, on average, it takes 6 throws of a die before a 6 appears.

Here’s another, quite different way to solve this problem. When rolling a die, there is a 1/6 chance that
a 6 will appear. If a 6 doesn’t appear, then we’re in essence starting over. That is to say, the number of
times we expect to throw the die before a 6 shows up is the same as the number of additional times we
expect to throw the die after throwing a non-6. So we have a 1/6 chance of rolling a 6 (and stopping),

11
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and a 5/6 chance of not rolling a six, after which the number of rolls we expect to throw is the same
as when we started. We can formulate this as

1 5
E=—-+-(EF+1). 35
s tgE+1) (3.5
Solving for I/, we find £ = 6. Note that Equation 3.5 implicitly assumes that £ is a finite number,

which is something that, a priori, we do not necessarily know.

2. On average, how many times must a 6-sided die be rolled until a 6 turns up twice in a row?

We can solve this using a recurrence relation on, F, the expected number of rolls. When we start
rolling, we expect, on average 6 rolls until a 6 shows up. Once that happens, there is a 1/6 chance that
we will roll once more, and a 5/6 chance that we will be, effectively, starting all over again, and so
have as many additional expected rolls as when we started. As a result, we can say

5

1
EFE=6+--1+=-(FE+1).
+6 +6(+)

Solving this, we find that £ = 42.
3. On average, how many times must a 6-sided die be rolled until the sequence 65 appears (i.e., a 6
followed by a 5)?

This appears to be quite similar to problem 2, but there is a difference. In problem 2, once we roll a
6, there are only two possibilities: either we roll a 6, or we start all over again.

In this problem, once we roll a 6, there are three possibilities: (a) we roll a 5, (b), we roll a 6, or (¢)
we start all over again.

We can again solve it using recursion, but we’ll need two equations. Let E be the expected number of
rolls until 65 and let Eg be the expected number of rolls until 65 when we start with a rolled 6. Then:

1 4 1

By = £(Bs+ 1)+ S(B+1) +£(1)
o é(E6+1)+%(E+1)

This gives us a system of two linear equations in two unknowns, which we can solve to find

E = 36, B¢ = 30.

So it takes fewer rolls on average to see a 6 followed by a 5 than it does to see a 6 followed by a 6.

4. On average, how many times must a 6-sided die be rolled until there are two rolls in a row that differ
by 1 (such as a 2 followed by a 1 or 3, or a 6 followed by a 5)? What if we roll until there are two
rolls in a row that differ by no more than 1 (so we stop at a repeated roll, too)?

Let E be the expected number of rolls. Let F; be the expected number of rolls after rolling an ¢ (not
following aroll of ¢ — 1 or¢ + 1).

Then we have 1
E= 1+6(E1+E2+E3+E4+E5+E6).

By symmetry, we know that Fy = Fg, E5 = Es and F3 = Fy, so

2
E:1+6(E1+E2+E3).

12
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We can express F/ as

2 1 2
Fi=1+-F — - F
1 +6 1+6 2+63

since there will definitely be an additional roll, there is a % chance that this will be the last roll (i.e.,
we roll a 2) and the five other possibilities are equally likely.

Similarly,

1 2 1
Ey=1+-F - F —-F
2 +6 1+6 2+63

and

2 1 1
Es=1+-F —-F - Fs.
3 +6 1+6 2+63

This gives us a system of three linear equations in three unknowns.

Solving, we find

70 58 60
E = — = — E = —
1= Pr= g and By = g7
and so 939
FE = 38 = 4.68627450980....

If we stop when we have a repeated roll, too, the situation is similar. Defining E, F1, Fo, and E3 as
above, we have the system

2
E:1+6(E1+E2+E3)

1 1 2
E1:1—|—*E1+*E2—|—*E3

6 6 6
1 1 1
Ey=1+-F —-F -F
2 + 6 1+ 6 2+ 6 3
2 1
Es=1+-F —Fs.
3 + 6 1+ 6 2
Solving this, we find
288 246 252
Ey=—E=—,and B3 = —
115 115 115
and so 477
FEF=—=23.2782
115 3.278260869565

5. We roll a 6-sided die n times. What is the probability that all faces have appeared?
Let P(n) stand for the probability that all faces have appeared in n rolls.
To determine P(n), we can use the principle of inclusion-exclusion.
We wish to count the number of roll sequences that do not contain all faces.
There are 6™ ways to roll a die n times.
Of these, 5" have no 1, 5™ have no 2, etc.

Simply adding those will not yield what we seek, since there are roll sequences that contain no 1 and
no 2 (for example), so we would be counting those twice.

As a result, we take that sum and subtract all the roll sequences with both no 1 and no 2, or both no 1
and no 3, etc.

13
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Again, we will not have quite what we wish, since we will have removed sequences that contain, say,
both no 1 and no 2, and no 1 and no 3, twice.

Hence, we have to add back in the number of sequences that fail to have three faces.

We continue in this way, alternating subtracting and adding numbers of sequences, until we reach the
final count: no sequence can fail to have all 6 faces.

All together, then, we find that the number of sequences that fail to have all 6 faces is

(1)

o -

o)

Hence, the probability of having all 6 faces appear in n rolls of the die is

ROIOR
e o

R
Jalt) o

6" —6-5"+15-4"-20-3"4+15-2" -6

Here is a short table of values of this probability.

IMYIONYI0N

) ~o6)

n | P(n) exactly P(n) approximately
110 0

210 0

310 0

4 10 0

510 0

6 | 5/324 0.01543210
7 | 35/648 0.05401235
8 | 665/5832 0.11402606
9 | 245/1296 0.18904321
10 | 38045/139968 0.27181213
11 | 99715/279936 0.35620642
12 | 1654565/3779136 0.43781568
13 | 485485/944784 0.51385819
14 | 317181865/544195584 0.58284535
15 | 233718485/362797056 0.64421274
16 | 2279105465/3265173504 0.69800440
17 | 4862708305/6530347008 0.74463245
18 | 553436255195/705277476864 0.78470712
19 | 1155136002965/1410554953728 0.81892308
20 | 2691299309615/3173748645888 0.84798754
36 0.99154188

6. We roll a 6-sided die n times. What is the probability that all faces have appeared in order, in some

six consecutive rolls (i.e., what is the probability that the subsequence 123456 appears among the n
rolls)?

This is a rather tedious calculation, but a nice way to handle it is as a Markov chain. We define a zero
state (the state we start in, and the state we are in if the current rolls value was not preceded by the
smaller values in order (e.g., if the current roll is a 2, but the previous roll was not a 1), and then six
states corresponding to having a current “streak” of 1,12, 123, 1234, 12345, 123456. Call these states

14
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one through six. The last state is an absorbing state. We then have the following transition matrix:

O WY WY WY Wi Wiy oot

O Ol Ol Ol Ol O~ O

[an}

[an) ) ja) [an) S o=

o O

[an} ) @) S ol

o o O

[an} @) S ol

o o o O

o S ol

o o o o ©o

— ol

Then, the probability p we seek is the last entry in the first row of M™. Using a computer algebra
system, these probabilities can be calculated exactly. Here is a short table of values, calculated exactly

and then converted to decimal approximations.

50

100
200
500
1000
2000
5000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
200000
300000

It may be useful to note that, for n > 1000, say,

is a quite good approximation.

P, approx.
0.00002143347051
0.00004286694102
0.00006430041152
0.00008573388203
0.0001071673525
0.0001286008230
0.0001500338342
0.0001714663859
0.0001928984782
0.0002143301111
0.0002357612847
0.0002571919988
0.0002786222536
0.0003000520490
0.0003214813850
0.0005357494824
0.0007499716542
0.0009641479102
0.002034340799
0.004171288550
0.01055471585
0.02110296021
0.04186329068
0.1015397384
0.1928556782
0.3485878704
0.4742727525
0.5757077184
0.6575715999
0.7236404850
0.7769618947
0.8199953550
0.8547258452
0.8827553586
0.9862551674
0.9983886648

7. We roll a 6-sided die n times. What is the probability that all faces have appeared in some order in
some six consecutive rolls? What is the expected number of rolls until such a sequence appears?

The use of a Markov chain is helpful here.

As we roll the die, let the state of the chain be the length of the current run of different faces that have
appeared. For example, if we’ve rolled 1232535 we would be in state 2 and if we’ve rolled 621342

15
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we would be in state 4. Then we can treat the game as starting in state 0 and ending in state 6, the
lone absorbing state, and our transition matrix, A, is:

0100000
0+ 20000
02 ¢ 2000
A=lo b b iy
1 1 1 1 1
05666 3 U
o0 L 1 1 1 11
6 6 6 6 6 6
0000O0T 01

The last entry in the first row of A is the probability that we have had a run of six distinct faces in six
consecutive rolls after rolling n times.

Here’s a short table.

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
30
40
50
59
100
150
185
200
239
310
364
418
544

5/324 ~ 0.0154320987654321

55/1944 ~ 0.0282921810699588

475/11664 ~ 0.0407235939643347

1235/23328 =~ 0.0529406721536351

27295/419904 = 0.0650029530559366
193805,/2519424 ~ 0.0769243287354570
1340735/15116544 ~ 0.0886932224720148
3032735/30233088 ~ 0.100311784227929
60831335/544195584 =~ 0.111782118026154
401963125/3265173504 = 0.123106206915980
2630801215/19591041024 = 0.134285932624874
1898020885,/13060694016 ~ 0.145323126219390
110178168055,/705277476864 ~ 0.156219603871238
706591379045 /4231664861184 ~ 0.166977159634352
4509200245295 /25389989167104 =~ 0.177597564757422
~ 0.276632203155226

~ 0.363740977546063

~ 0.440360014062237

~ 0.501395674467765

~ 0.705366141972490

~ (0.844884010296883

~ 0.901003849080251

~ 0.918336030954966

~ 0.950488949860775

~ 0.980090832609887

~ 0.990042806960432

~ 0.995020098465974

~ 0.999011257908158

From the transition matrix, we can also calculate (see Appendix D for the method) that the expect
number of rolls until six distinct faces appear in six consecutive rolls is

416
— = 83.2.
)

Alternatively, we can find the expected value by creating a set of linear recurrence equations. Let
E; be the expected number of rolls from a point where the last 7 rolls were distinct. We seek Fy. We

16



A Collection of Dice Problems

have then

Eo=1+FE;

1 5
FEi=1+-F -F
1 +6 1+6 2

1 1 4
BEo=1+-F —-F -F
2 +6 1+6 2+6 3

1 1 1 3
Es=1+-F —-F -F —-F
3 +6 1-1-6 2+6 3—1-64

1 1 1 1 2
Eyi=1+-F D D D D
4 +6 1+6 2+6 3+6 4+6 5

1 1 1 1 1 1
Fs=1+-F — -F -F - F —
5 +61+6 2+6 3+6 4+6 5+66

Es=0

Matthew M. Conroy

(3.6)
3.7)

(3.8)
(3.9)
(3.10)

@3.11)
(3.12)

The last zero rolls are distinct only before the rolls have started, so £y = 1 + Ej since there must
be a roll, and that takes us to the state where the last 1 roll is distinct. Then another roll occurs; at
this point, with probability 1/6 the roll is the same as the last roll, and so we remain in the same state,
or, with probability 5/6, a different face appears, and then the last two rolls are distinct. The pattern

continues this way.

Thus we have a system of seven linear equations in seven unknowns, which is solvable via many

methods. The result is

Thus, on average, it will take 83.2 rolls before getting a run of six distinct faces.

416

Ey = E = 83.2
By = — =822
E, =81

Es = % =179.2
Ey = ? = 75.6
Es = %4 = 64.8

8. Person A rolls n dice and person B rolls m dice. What is the probability that they have a common face
showing (e.g., person A rolled a 2 and person B also rolled a 2, among all their dice)?

We will assume 6-sided dice.

Let X be the multiset of faces that person A rolls, and Y be the multiset of faces that person B rolls.

We want the probability

P(leXandleY)or(2€ Xand2€Y)or...).

Let A;betheevent“ic X andicY ”.

17
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Then, we want, by an application of the inclusion-exclusion principle,

P (QA) = > (-n¥Ftp <ﬂ Ai> .

SC{1,....6} ieS
S£@

Now, suppose S C {1,...,6}, with S = {j1,...,j5}. Then
P <ﬂ Az) = P(jla s 7j\S\ € X)P(jlv s ,j|5’\ € Y)
ieS
Let o, = P(j1,...,Jr € X). Then, applying inclusion-exclusion again,

OJTZP(jl,...,jTEX)
:1—P(j1 QXorjggXor...)

—1-P (l:LTJIJZ ¢ X>
=1- > (-p¥itp (ﬂ Ji ¢ X)

SC{1,...,r} =
S#o

—1- 3 e (- B

Sg{l,-.-ﬂ”}
S#o

—1- ;(—UH <1 - é)n (:)

Similarly, letting 5, = P(j1,...,jr € Y), we have

and so

P (ﬂ Ai) = > (D) g8

ieS SC{1,....6}
S4o
6
= Z(—l)i_lazﬂz’ (f)
i=1

Here are a few calculated values of P, the probability of a common face, for various n and m.

18
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9.

10.

n m P P, approx.
1 1 1/6 0.1666666
1 2 11/36 0.3055555
2 2 37/72 0.5138888
1 3 91/216 0.4212962
2 3 851/1296 0.6566358
3 3 6151/7776 0.7910236
1 4 671/1296 0.5177469
2 4 1957/2592 0.7550154
3 4 40571/46656 0.8695773
4 4 86557/93312 0.9276084
5 5 9856951/10077696 0.9780956
6 6 120194317/120932352 0.9938971

On average, how many times must a 6-sided die be rolled until all sides appear at least once? What
about for an n-sided die?

To roll until every side of the die appears, we begin by rolling once. We then roll until a different side

appears. Since there are 5 different sides we could roll, this takes, on average, 716 = g rolls. Then

we roll until a side different from the two already rolled appears. This requires, on average, ﬁ = g

rolls. Continuing this process, and using the additive nature of expectation, we see that, on average,
6 6 6 6 6 147
1+-4+-+-+-+-=—=14
+ 5 + 4 + 3 + 2 + 1 10 7
rolls are needed until all 6 sides appear at least once. For an n-sided die, the number of rolls needed,

on average, is
n

n
n n n n 1
1 NP :
Thoith T Z;z ”z;z

For large n, this is approximately n log n.

(This problem is an example of what is often referred to as a Coupon Collector’s problem. We can
imagine that a person is trying to collect a set of n distinct coupons. Each day (say) they get a new
coupon, which has a fixed probability of being one of the n types. We may then ask for the expected
number of days until all n coupons have been collected. This problem is analogous to the situation in
which all n coupon types are equally likely. For a more complicated version, see problem 33.)

On average, how many times must a 6-sided die be rolled until all sides appear at least twice?

This is quite a bit more complicated than the previous problem (where we roll until each side appears
at least once).

Modeling the problem with a Markov chain is helpful here.

As we roll the die, we need to keep track of how many times each side has appeared. After each
roll, then, we can capture the state of our rolling with a vector, (x1, x9, x3, x4, 5, T¢), Where x; is the
number of times side 7 has appeared so far. Since we are only interested in rolling all sides twice, we
can take z; € {0, 1,2} (that is, even if we roll a side more than twice, we keep z; at 2 - it does not
matter how many times we have rolled it as long as it is at least 2).

We could make a Markov chain using these vectors as our states. This would give us a chain with
3% = 729 states, hence requiring a 729 x 729 transition matrix.

19
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However, we can utilize the symmetry of our dice to reduce the number of states considerably. Be-
cause all sides of the die are equally likely, we do not actually need the vector to represent the state,
but only the corresponding multiset of values.

For example, the vectors (0, 1, 1, 2, 0, 0) represents, in essence, the same state as (2,0, 1,0, 1, 0). Both
correspond to the multiset {0,0,0,1,1,2}.

Further, since each multiset has six elements, we can represent one of these multisets with an ordered
pair (a, b) where a is the number of 1’s and b is the number of 2’s in the set.

Thus, for example, the state vector (1,0, 1,0, 0, 0) can be denoted by (2, 0), and the vector (2, 1,0, 1,0, 0)
can be denoted by (2, 1).

The rolling begins, then, in the state (0, 0) and ends in the state (0, 6).

Thus, our set of states consists of all ordered pairs (a,b) where a,b € {0,1,...,6} and a + b < 6.
This gives us 28 states.

We then can calculate transition probabilities as follows.

The transition from (a, b) to (a+1, b) occurs with probability p = 1 — “TH’. This is because 6 — (a+b)
is the current number of zeros, and so p gives the probability of rolling one of the sides that have not
appeared yet.

a

If b < 6, then the transition from (a,b) to (a — 1,b + 1) occurs with probability p = §. This is
because a is the number of sides which have appeared exactly once so far, and p gives the probability
of rolling one of these sides, converting the corresponding 1 into a 2, and hence increasing the number
of 2’s and reducing the number of 1’s by one each.

The transition from (a, b) to (a, b) occurs with probability p = %. This is because b is the number of
2’s, and so p gives the probability of rolling one of the corresponding sides, which does not change
the counts at all.

The transition probabilities give a single absorbing state, (0, 6).

Ordering these states (0,0),(1,0),(2,0),...,(0,5),(1,5),(0,6), we have the following transition
matrix:
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Applying the methods of Appendix D, we can determine from this matrix that the expected number

of rolls until all sides have appeared at least once is

=24.1338692. ...

390968681
16200000

We can also use matrix P to calculate the probability ¢ that after j rolls all sides have appeared at
21

least twice. Here are some values:
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11.

J |4a

1[0

12 | 0.003438285...
13 | 0.014899238...
14 | 0.037661964...
15 | 0.072748752...
16 | 0.119155589...
17 | 0.174576398...
18 | 0.236147670...
19 | 0.301007601...
20 | 0.366633348...
21 | 0.430995652...
22 | 0.492589321...
23 | 0.550391734...
30 | 0.828548154...
34 | 0.906280939...
39 | 0.957121359...
49 | 0.991461443...
62 | 0.999009173...

This problem is an example of what is often referred to as a Coupon Collector’s problem.

On average, how many times must a pair of 6-sided dice be rolled until all sides appear at least once?

We can solve this by treating the rolling of the dice as a Markov process. This means that we view our
game as being always in one of a number of states, with a fixed probability of moving from one state
to each other state in one roll of the dice.

We can define our states by the number of sides we have seen appear so far. Thus, we starts in State
0, and we wish to end up in State 6, reaching some, or all, of States 1, 2, 3, 4 and 5 along the way.

On the very first roll, we will move from State O to either State 1 or State 2. We move to State 1 with
probability 3%, since this happens exactly if we roll “doubles”. Otherwise, we move to State 2, so we
move to State 2 from State O with probability %.

Thus, our question can be stated thus: starting in State 0, what is the expected number of rolls until
we reach State 67

We determine the transition probabilities, the probability of transitioning from one state to another
in one roll. We can create a diagram like this that shows the probability of moving from one state to
each other state in one roll:

30 2 12 16 2
36 36 36 36 36 1

36 /é\ 36
1 9 25
36 36 36

To solve the problem, we create a transition matrix for this process as follows. We let row 1 represent
State 0, row 2 represent state 1, etc. Then the 7,;j-th entry in the matrix is the probability of transition
from the row 1 state to the row j state in one roll (that is, from state 7 — 1 to state j — 1).
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For this process, our transition matrix is

%‘»—- =

) o

) ) (e

[es} ) @) [es}

LB o= ol
ge &=

Y

Il
(@) (an)} (e} (@] (@)} (an) (@]
o (aw] o o (aw]
o o o O o~ o olox
o o S k= oot oot O
o o ok PN ow-

[an}
—_

The matrix ) as described in Appendix D is then

o O

1

6
L
3

(=]
(] o o

O

I
o o o o o o
o o o ok ZGlo oo
(@) O = ©Olot ©lot (@]

0
0
0
0

o e GlN ol

LB = ol

The matrix N = (I — @)~ ! as described Appendix D is then

| 6 57 3T 43 461
35 56 42 28 154
0 36 2 47 41 463
35 56 42 28 154

9 5 31 329

0 0 % § 3% 1m0
4 7 166

00 0 3 35 35
9 162

00 0 o 2
o0 0 0 0 26

11

Summing the first row we find the expected number of rolls until all six sides have appeared

6 57 37 43 461 70219
+ 35 * o6 * 42 * 28 * 154 9240 759945887445

By looking at the last entry of the first row of powers of the matrix P, we can find the probability of
reaching state 6 in a given number of rolls:
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rolls | probability of reaching this state in exactly | probability of reaching this state on or be-

this number of rolls fore this number of rolls

1 0 0

2 0 0

3 5/324 ~ 0.015432099 5/324 ~ 0.015432099

4 575/5832 = 0.098593964 665/5832 ~ 0.11402606

5 22085/139968 ~ 0.15778607 38045/139968 =~ 0.27181213

6 313675/1889568 ~ 0.16600355 1654565/3779136 ~ 0.43781568

7 78924505/544195584 ~ 0.14502967 317181865/544195584 ~ 0.58284535

8 376014275/3265173504 =~ 0.11515905 2279105465/3265173504 ~ 0.69800440

9 61149474755/705277476864 ~ | 553436255195/705277476864 =
0.086702719 0.78470712

10 | 401672322475/6347497291776 ~ | 2691299309615/3173748645888 =
0.063280424 0.84798754

11 | 0.045328994 0.89331653

12 | 0.032098630 0.92541516

13 | 0.022567579 0.94798274

14 | 0.015795289 0.96377803

15 | 0.011023854 0.97480189

16 | 0.0076798753 0.98248176

17 | 0.0053441053 0.98782587

18 | 0.0037160115 0.99154188

19 | 0.0025827093 0.99412459

20 | 0.0017945018 0.99591909

21 | 0.0012466057 0.99716570

22 | 0.00086588683 0.99803158

23 | 0.00060139404 0.99863298

24 | 0.00041767196 0.99905065

So we see that there is a less than one in a thousand chance that more than 24 rolls would be needed,
for instance.

Alternative approach: Instead of using a transition matrix, we can create a system of linear equations
that we can solve to get the expected value of the number of throws.

Let E,, be the expected number of throws needed until all faces have appeared, if n faces have already
appeared. We seek £ = 0.

We know that, starting with zero faces, we must roll the pair once; with % probability, exactly one face
appears, and with % probability, two faces appear. Hence,

1 5
Ey=1+-F —Fs.
0 +6 1+62

In a similar fashion, we can create the following system relating these E' variables:

E0:1+éE1+%E2

E1:1+%E1+£E2+%E3
E2:1+%E2+%E3+£E4
E3:1+%E3+%E4+%E5

16 18
Ey=1+—F —F
4 +36 4+36 5
25
Es=1+—F
5 +36 5
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12.

It is then straightforward to solve the system and find

70219

0~ "9240
as found above.

Additional question: What if we roll three (or more) dice at a time? We can answer that with another
six-state Markov process; only the transition probabilities would change.

(Special thanks to Steve Hanes and Gabe for sending me this nice problem.)

Suppose we roll n dice. What is the expected number of distinct faces that appear?
Let & be the sought expectation.
I will give three distinct solutions.

Let X be the number of distinct faces appearing in n rolls of a die. Using the inclusion-exclusion
principle, we have the following probabilities:

=00

-0 OO -00)

o= OO OO OO0
-0 OO -O0 0000
o= OO O OO OO OO0

These expressions determine the distribution of the number of distinct faces in n rolls.

To find the expectation, we want

&= iP(X =)

=1

and, after some chewing, this simplifies to
5 n
E=6—-6|—=] .
(&)
The probability that the j-th roll will yield a face distinct from all previous faces rolled is
6-5-1  /5\/7!
5= (s)

25

Here’s a different approach.
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since, thinking in reverse, there are 6 faces the j-th roll could be, and then 51 waystoroll j — 1
rolls not including that face, out of a total 6/ ways to roll j dice.

As aresult, the expected contribution from the j-th roll to the total number of distinct faces is just the
probability that the j-th roll is distinct: the roll contributes 1 with that probability, and O otherwise.

Using the additivity of expectation, we thus have

S0 (S0 ) () e

=0 6
For a third solution, let X; be a random variable defined by

{1 if the face ¢ appears in n rolls of a die,
7: =

0 otherwise.
Let X be the number of distinct faces appearing in n rolls of a die. Then
X=X +Xo+ X3+ -+ X
and so the expected value of X is
E(X)=E(X1)+ E(X2) +---+ E(Xg) = 6E(X1)

by symmetry. Now, the probability that a 1 has appeared in n rolls is
5 n

B(X)) =1 -P(X;=1)=1— (2>n

and thus the expected number of distinct faces appearing in n rolls of a die is

&= 6E(X,) =6 (1 - <2>n> .

Here’s a short table of values of &.
&

1

1.83

2.527
3.106481
3.588734...
3.990612...
4.325510...
4.604591...
4.837159...
5.030966...
5.532680...
5.909430...
5.956322...
5.991535...
5.999050...

and so

3

0O DN kAW~

W NN = = O
AN W kO

N
%)
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13.

14.

Suppose we roll n dice and keep the highest one. What is the distribution of values?

Let’s find the probability that the highest number rolled is k. Among the n dice rolled, they must all
show £ or less. The probability of this occurring is

k?’l,

67 .
However, if £ > 1, some of these rolls do not actually have any k’s. That is, they are made up of only
the numbers 1 through k& — 1. The probability of this occurring, for any k& € {1,...,n}, is

(k—-1)"
67’L
so the probability that the highest number rolled is & is
k" —(k—1)"
6™ '
So, for instance, the probability that, if 7 dice are rolled, the highest number to turn up will be 3 is

37— 27 2059

o o7~ 0.007355.

Suppose we can roll a 6-sided die up to n times. At any point we can stop, and that roll becomes our
“score”. Our goal is to get the highest possible score, on average. How should we decide when to
stop?

If n = 1, there is no decision to make; on average our score is 7/2.

If n = 2, we want to stick if the first roll is greater than 7/2; that is, if it is 4 or greater. Otherwise, we
roll again. Thus, with n = 2, our average score is

1 1 1 3\ 7 17
-4 - 15 -6 — | == — =4.25.
()4 ()7 (5)e+(5) 5=
If n = 3, we want to stick on the first roll if it is greater than 4.25; that is, if it is 5 or 6. Otherwise,
we are in the n = 2 case. Thus, with n = 3, our average score is

(Yo (Do (2) 17 = ..

In general, if we let f(n) be the expected value of our score with n rolls left, using s-sided dice, we
have the recursion .
Lf(n—1)] j

sy = =Dy oy S
j=Lf(n-1)]+1
with f(1) = (s +1)/2.

We may then calculate, for s = 6, the following table:
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n | f(n)
1 |72=35

2 | 17/4=4.25

3 | 14/3 =4.666..

4 | 89/18 =4.944...

5 | 277/54 =5.1296...
10 | 5.6502...

21 | 5.95292...

30 | 5.9908762...

43 | 5.9991472...

Thus, for a 6-sided die, we can summarize the strategy as follows:

* If there are at least 5 rolls left, stick only on 6.
e If there are 4, 3, or 2 rolls left, stick on 5 or 6.
e If there is only 1 roll left, stick on 4, 5 or 6.
15. How many dice must be rolled to have at least a 95% chance of rolling a six? 99%? 99.9%?

Suppose we roll n dice. The probability that none of them turn up six is

&)

and so the probability that at least one is a six is

-

To have a 95% chance of rolling a six, we need
5 n
1-(=)] >0.95

5 108005 L 0s S 16

"= 1og(5/6)
Hence, n > 17 will give at least a 95% chance of rolling at least one six. Since log(0.01)/log(5/6) =
25.2585 ..., 26 dice are needed to have a 99% chance of rolling at least one six. Similarly, since
log(0.001)/log(5/6) = 37.8877 ..., 38 dice are needed for a 99.9% chance.

which yields

16. How many dice must be rolled to have at least a 95% chance of rolling a one and a two? What about
a one, a two, and a three? What about a one, a two, a three, a four, a five and a six?
Solving this problem requires the use of the inclusion-exclusion principle. Of the 6™ possible rolls of
n dice, 5" have no one’s, and 5 have no two’s. The number that have neither one’s nor two’s is not
5™ + 5™ since this would count some rolls more than once: of those 5" rolls with no one’s, some have
no two’s either. The number that have neither one’s nor two’s is 4", so the number of rolls that don’t
have at least one one, and at least one two is

5% 4+ 5" — 4" =2.5" — 4"
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and so the probability of rolling a one and a two with n dice is
2.5" —4"
6" ‘
This is an increasing function of n, and by direct calculation we can show that it’s greater than 0.95
for n > 21. That is, if we roll at least 21 dice, there is at least a 95% chance that there will be a one
and a two among the faces that turn up.

1

To include three’s, we need to extend the method. Of the 6™ possible rolls, there are 5" rolls that have
no one’s, 5" that have no two’s, and 5" that have no three’s. There are 4™ that have neither one’s nor
two’s, 4™ that have neither one’s nor three’s, and 4" that have neither two’s nor three’s. In addition,
there are 3" that have no one’s, two’s, or three’s. So, the number of rolls that don’t have a one, a two,
and a three is
5" 4+ 5" 45" — 4" — 4" — 4"+ 3" =3.5" -3 -4" 4+ 3",
Hence, the probability of rolling at least one one, one two, and one three is
3:5"—-3-4"43"
6™ ’
This is again an increasing function of n, and it is greater than 0.95 when n > 23.

1

Finally, to determine the probability of rolling at least one one, two, three, four, five and six, we extend
the method even further. The result is that the probability p(n) of rolling at least one of every possible
face is

a1 () (5 e ) (3 ) (03

This exceeds 0.95 when n > 27. Below is a table showing some of the probabilities for various n.

n p(n)

6 | 0.0154...
7 | 0.0540...
8 | 0.1140...
9 | 0.1890...
10 | 0.2718...
11 | 0.3562...
12 | 0.4378...
13 | 0.5138...
14 | 0.5828...
15 | 0.6442...
16 | 0.6980...
17 | 0.7446...
18 | 0.7847...
19 | 0.8189...
20 | 0.8479...
21 | 0.8725...
22 | 0.8933...
23 | 0.9107...
24 1 0.9254...
25 | 0.9376...
26 | 0.9479...
27 | 0.9565...
30 | 0.9748...
35 | 0.9898...
40 | 0.9959...
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17.

18.

How many dice should be rolled to maximize the probability of rolling exactly one six? two sixes? n
sixes?

Suppose we roll n dice. The probability that exactly one is a six is

(711)5n—1 n5n71
6n 67

The question is: for what value of n is this maximal? If n > 6 then ("g;i)f t <

must occur for some n < 6. Here’s a table that gives the probabilities:

n5n71

&> S0 the maximum

nbs"1
n o
1 1/6=0.1666...
2 5/18=0.27717...
3 25/72=0.3472...
4 125/324 =0.3858...
5 3125/7776 = 0.4018...
6 3125/7776 =0.4018...

3125
This shows that the maximum probability is P and it occurs for both n = 5 and n = 6.

For two sixes, the calculation is similar. The probability of exactly two sixes when rolling n dice is

(3)5”_2 _ n(n — 1)5"2

6™ 2.6m

A quick calculation shows that this is maximal for n = 12 orn = 11.

It seems that for n sixes, the maximal probability occurs with 6n and 6n — 1 dice. I'll let you prove
that.

Suppose we roll a fair die 100 times. What is the probability of a run of at least 10 sixes?

We will consider this problem generally.

Let p,, be the probability of a run of at least r successes in n throws. Let o be the probability of
success on any one throw (so when throwing a single fair die, « = 1/6.)

Clearly p, =0ifn < r.

We can determine p,1 in terms of p, and p,_,. There are two ways that a run of r can happen in
n + 1 throws. Either (a) there is a run of r in the first n throws, or (b) there is not, and the final r
throws of the n + 1 are all successes.

The probability of (a) occurring is py,.
To calculate the probability of (b), first note that for (b) to occur, three things have to happen:

(a) There is no run of length 7 in the first n — r throws; this happens with probability 1 — p,_,.

(b) On throw number n — r 4 1, we do not get a success. If we did, then we would have a run of r
successes in the first n throws (since the final r throws are all successes). The probability here
isl—a.

(c) The final r throws are all successes. The probability of this is a.
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Since these three events are independent, we find that
Prit = pn+ (1= par)(1 — @)’
Since r and « are fixed, this is a linear recurrence equation, and we have initial conditions
p=pr=..=p—1=0, and p, = '
If we take n = r, we find
pry1=pr+(1—po)(1—a)d" =a"+ (1 —a)d" =a"(2—a).

and then
Prao =pri1+ (1 —p1)(1 — a)a” =a" (3 — 2a).

Similarly, if » > 2 then

Pras =pPr42+ (1 —p2)(1 —a)a" =a"(3—2a) + (1 —a)a” = a" (4 — 3a).

So, for instance, the probability of a run of at least 3 sixes when a die is thrown 5 times is (with r = 3

and o = 1/6)
_<1 T2y _ 1
Ps =\ T6) 31

and if the die is thrown 6 times the probability is

(YT 1
Pe=\6 6) " 432~ 61.714...
With this recurrence equation, we can calculate an expression for p,43, pr+4, €tc.

To answer the question “what is the probability of a run of 10 sixes in 100 throws of a fair die?”
we wish to calculate pjgo with @« = 1/6 and » = 10. Using a free computer algebra system (like
PARI/GP), we can determine that, with »r = 10 and = 1/6,

P00 = —10a% + 1350 — 72007 + 21000 — 37800 + 4410a°* — 33600 + 1620a”% — 450a”!
+ 550 — 12597008 + 108528005 — 4069800050 + 86822400%° — 11531100054 + 9767520053
— 515508002 4 155040002 — 20349000 — 20358000 + 148443750¢ — 463144500
+ 801596250 — 831285000 + 51658425072 — 178132500 + 262957507 — 38383806
+ 23688288a5% — 608657400 + 8334768003 — 64155780052 + 26320320a5! — 449638805
— 21187600 + 10824100a°* — 221088000°3 + 225694000°2 — 115150000 + 23490600°°
— 4876350 + 19847600*® — 30284700 + 20532000 — 5218550 — 54740032 + 16663502

— 1690500 + 5715503 — 31600%2 + 640002" — 32400%° — 900! + 910
| 2138428277869029245997109282919411017852189744280011307296262359092389
T 1701350582031434651293464237390775574315478412689986644643416579087232139264

1
0.00000125690042984... = 79560797 "
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19. Suppose we roll a fair die until some face has appeared twice. For instance, we might have a run of
rolls 12545 or 636. How many rolls on average would we make? What if we roll until a face has
appeared three times?

For the first part of the question, we can enumerate easily the possibilities. Let X be the number of
rolls made until a face has appeared twice. We would like to know P(X = z) for2 <z < 7.

In the X = 2 case, our run of rolls must have the form AA, where 1 < A < 6. So there are 6 such

runs, out of 62 possible. Hence,

6
P(X =2) =2 =

[N

In the X = 3 case, our run of rolls must have the form ABA or BAA, and so

6-5 5
P(X=3)=2—=—.
( 3) 63 18

In the X = 4 case, our run of rolls must have the form ABC A, BACA, or BCAA, and so

6-5-4 5
PX=4)=3—7—=—.

( )=3 64 18
Similarly, we have

67 27
75&54¢y2733
66 324
6:-5-4-3-2-1 5

67 T 324

:46‘5'4-3: )

P(X=7)=6

Thus we see that X = 3 and X = 4 are tied as the most likely, and the expected number of rolls is

7
1223
j{:ifx)(::i)::7§i§:::17746913580246“”
=2

When rolling until a face appears three times, things are a little more complex. For fun, I thought of
treating this as a Markov chain. The number of states is quite large: as we roll, we keep track of the
number of 1°s, 2’s, etc. that have been rolled. Hence there will be 3¢ = 729 states to consider, plus
the absorbing state, for a total of 730 states. We can map the number of appearances of each face to
a state by a function as follows. Suppose the number of appearances of face i is a;. Then we can
number the current state as

S=14+a;+3as + 32a3 + 33a4 + 34a5 + 35a5

Then, we create a transition matrix to express the probability of going from state .S to state 7, for all
possible states. Here is some GP/PARI code which does this:

\\ define a function to map the vector of face counts to a state number
state(a,b,c,d,e, f)=1+a+3xb+9+c+27xd+81+e+243*f; \

\\ initialize a matrix for the transition probabilities
A=matrix (730, 730);\

\\ generate the probabilities and put them in the matrix
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for (al=0,2, for (a2=0,2, for (a3=0,2, for (a4=0,2, for (a5=0, 2, for (a6=0, 2, \
print (al);\

\\ v is the vector of counts

v=vector (6);v[ll=al;v[2]=a2;v[3]=a3;v[4]=a4;v[5]=a5;v[6]=a6;\
\\ s is the state

s=state (al,a2,a3,a4,ab5,a6);\

\\ look at how many face counts are equal to 2,

\\ since there is a 1/6 chance for each

\\ such face that we’ll go to the absorbing state from here
c=0; for(i=1,6,if (v[i]l==2,c=c+1));\

print (c);\

\\ create a new vector w of the counts,

\\ then increase each face (with count<2) by one,

\\ and see where we go, give 1/6 probability of going to that state
w=vector (6); for (i=1,6,wl[il=v[i]);\

A[s+1,0+11=c/6;\

for (i=1,6,for(j=1,6,w[jl=v[J]);\
if(wli]l<2,w[i]l=w[i]+1;ss=state(w[l],w[2],w[3],w[4],w[5],w[6]);\
A[s+1l,ss+1]1=1/6;\

)N\

))))))

Matthew M. Conroy

Once we have the transition matrix A, we can calculate A™ for n = 1,...,13 and determine the

probabilities of ending in exactly n rolls:

n P(X =n) P(X <n)

1 0 0

2 0 0

3 3 = 0.027 3 = 0.027

4 2 =0.0694 £ =0.972

5 25 =0.1157407 23 =0.212962...

6 | 25 =0.154320... 19 = 0.367283...

7 22 =0.17361 o = 0.540895...

8 | 12 =0.166538... S00L = 0.707433...
9 | o5 =0.135030... | S22 =0.842463...
10 | #02 =0.0900205... | 237 =0.932484...
11 | 255 =0.0468857... | 3357 = 0.979370...
12 | 2525 = 0.0171914... | 220997 = 0.996561...
13 | 225, = (.00343828... 1

We find the expected number of rolls to be

559872

13

4084571
D iP(X = i) = ——— = 7.2955443387059899....
=1
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Additional questions: what if we roll until a face appears 4 times, or 5 times, etc?

20. Suppose we roll a fair die 10 times. What is the probability that the sequence of rolls is non-decreasing
(i.e., the next roll is never less than the current roll)?
For example, the sequence {1,2,2,2,3,4,5,5,5,6} is a non-decreasing sequence.
The total number of possible roll sequences is 6'°. How many of these are non-decreasing?
An excellent observation is that every non-decreasing sequence is equivalent to a “histogram” or
vector which gives the number of times each face appears.
For example, the sequence {1,2,2,2,3,4,5,5,5,6} is equivalent to the vector (1,3,1,1,3,1). By
equivalent, I mean that there is a one-to-one correspondence between the sequences and vectors. So,
counting one is equivalent to counting the other.

Thus, we wish to count how many ways can 10 indistinguishable things be placed into 6 bins, where
we allow for zero items to be placed in some bins.

To count that, we observe that this is equivalent to the number of ways to place 16 indistinguishable
things into 6 bins, where each bin must contain at least one item. Subtracting one from each bin will
give us a vector of the previous sort.

To count this, we can use the stars-and-bars method. Putting 16 things into 6 bins is equivalent to
putting 5 bars among 16 stars, such that there is at most one bar between any two stars. For instance,
this choice of bars:

represents the vector (3,5, 2, 1,4, 1) which, if we subtract one from each component yields the vector
(2,4,1,0,3,0) which corresponds to the rolled sequence 1,1,2,2,2,2,3,5,5,5.

Since there are 16 stars, there are 15 places for bars, and hence the number of such sequences is

15
= 3003
(%)

Thus, the probability of rolling such a sequence is a very low

3003 1001 1
= = 0.0000496641295788... =
610 20155392

20135.25674...
Generally, for a sequence of n rolls, the probability is

("5 )

67’L

Pn =

Here is a table of some values
n Pn

5= = 0.032407

7
AT = 0.00990226...

11
T = 0.00282921...
el — 0.000766246...
1001 (5 000198656...

= 0.0000496641...

O 0 3 N i B W =

—

o
—
o
S
=

20155293
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21.

The value of p;2 is greater than one-in-a-million, but p3 is less.

Suppose a pair of dice are thrown, and then thrown again. What is the probability that the faces
appearing on the second throw are the same as the first?

What if three dice are used? Or six?

We may consider two cases. If two dice are thrown, the result will either be two different faces, or the
same face twice. We may notate these two cases as “AB” and “AA” (this will be useful later). The
probability that two different faces will appear is

6-5_ 5
62 6
and the probability that the second throw will be the same as the first in this case is

2
@ .
Thus, the probability that the second roll will repeat the first in this way is

6-5-2 5
6* 108
The other possibility of of rolling doubles. This case gives a probability of

6\(Ly_6_ 1
62)\62) 64 216

of occurring. Adding together, we find the probability of the second throw being identical to the first
is
) 1 11

—+—=—=0. 259....

108 + 216 216 00509259
If we throw three dice, there are more cases to consider. These cases may be expressed as AAA, AAB,
and ABC. (For example, throwing {1, 3,3} would be an example of the AAB case, while {2,4,5}
would be an example of the ABC case.) The probability of repeating via each case is as follows:

aa ()@ -4

AAB @)(6% (g)zzm

63 66
(5)3'Y (3 720
asc (G2 @) -3

The first factor in each case is the probability of rolling that case, and the second is the probability of
rolling the same set of faces a second time.

Adding these, we see that the probability of repeating with three dice is

996 83

— = ——— = (0.02134773662551....
66 3888

For six dice, the problem is similar, just with more cases. Here is the calculation:
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22.

AAAAAA (#) (&) =
65 (6
AAAAAB () @) -
=.(6 6
AAAABB (656§2)> ) _em
6
AAAABC (6-5-46-()(6-5)) (6%) — 51000
6) (6 6
AAABBB <(2()36(3)) %) o
6-5-4-(5)- (4
AAABBC (ég)(l)) ((g) (411)) _ 436210200
6-5-4-3-(8 =
AAABCD (66(3)> (66%4) _ 86g110200
GG /oy
6-5-4-~223
AABBCC ( i <(22§2)> - 166210200
53 DG 7 042
AABBCD 6543 - 22 <(2)(626)(1)> — 29%?200
5432 @GOG 704y 2
AABCDE (65432 — <(2)(1g§1)(1)> _ 3835000
ABCDEF (%) (%) _ 5165314200

(For example, rolling {1, 2,3, 3,5, 5} would be an example of the AABBCD case.)

The first factor in each case is the probability of rolling that case, and the second is the probability of
rolling the same set of faces a second time.

Adding the probabilities for all cases gives a total probability of

8848236 737353
612 181398528

= 0.004064823502...

What is the most probable: rolling at least one six with six dice, at least two sixes with twelve dice,
or at least three sixes with eighteen dice? (This is an old problem, frequently connected with Isaac
Newton.)

One way to solve this is to simply calculate the probability of each. The probability of rolling exactly
m sixes when rolling r six-sided dice is
r 5r—m
()5

so the probability of rolling at least m sixes when rolling r six-sided dice is

p(m,r) = zr: (Z) 5;?-

i=m

Grinding through the calculations yields

31031
1,6) = " ~ 0.66510202331961591221
P(1,6) = 6656
1346704211
2.12) = —— = ~0.61 23087134
p(2,12) 5176782336 0.61866737373230871348
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15166600495229
18) = ~ 0. 4 47723194
p(3,18) 5389939167104 0.59734568594772319497

so that we see that the six dice case is the clear winner.

23. Suppose we roll n dice, remove all the dice that come up 1, and roll the rest again. If we repeat this
process, eventually all the dice will be eliminated. How many rolls, on average, will we make? Show,
for instance, that on average fewer than O(logn) throws occur.

We expect that, on average, 5/6 of the dice will be left after each throw. So, after k throws, we expect
to have n (%)k dice left. When this is less than 2, we have, on average less than 6 throws left, so the
number of throws should be, on average, something less than a constant time log n.

Let M,, be the expected number of throws until all dice are eliminated. Then, thinking in terms of a
Markov chain, we have the recurrence formula

1 /5\" = n o\ 5
MHZGTL <6> (1+Mn)+z(1+MJ)<n—j)67
j=1
which allows us to solve for M,,:
n—1
n ,
1+5”+Z(1+Mj)( e j )5J
j=1
M, = 6" — 5n
Here are a few values of M,,.
M,
6
8.72727272727273
10.5554445554446

11.9266962545651
13.0236615075553
13.9377966973204
14.7213415962620
15.4069434778816
16.0163673664838
10 | 16.5648488612594
15 | 18.6998719821123
20 | 20.2329362496041
30 | 22.4117651317294
40 | 23.9670168145374
50 | 25.1773086926527

OO N WN—S

We see that M, increases quite slowly, another suggestion that M,, = O(log n). To show this, suppose
M; < Clog j forall 2 < j < n. Then we have

n—1

1+5"+maX{1+6,1+010g(n_1)}2( nzj )Sj
=1
M, :
< 6" — 5"
1+ 5" + Clog(n — 1)(6" - 5" — 1) ! -
67 — 5n C 6" — Hn og(n )+6”—5”<Cogn
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if and only if
<1

{— 1 log(n — 1) 1+5"
6" — 5n logn C'logn(6™ — 57)

Since Ms/log 2 < 13, we may suppose C' = 13. It is not hard to show the above inequality holds for
all n, and hence M,, < 13logn foralln > 2.

24. Suppose we roll a die 6k times. What is the probability that each possible face comes up an equal
number of times (i.e., k times)? Find an asymptotic expression for this probability in terms of k.

In the 6k rolls, we want & of them to appear as the face “1”. There are
6k
k
5k
k

ways for k£ 2s to occur among the 6k — k£ = 5k remaining spots.

ways this can occur. There are then

Continuing, we can conclude that there are

6k\ (5k\ (4k\ (3k\ (2k\ (k

k k k k k J\k
ways to rolls an equal number of each face when rolling 6% times.
Hence the probability of this happening is

() GG GGG (ok)!

66k (k!)666k

after simplification.

By applying Stirling’s approximation for the factorial,

. n!
Jm Vo () 1

we can approximate the probability as

(6k)! Vo 6k (%)™
(k")666k ~ (\/m (%)k)666k
_ 27 - 6k

(2mk)3

- (2m)5/2

Let P(k) be the probability of rolling an equal number of all faces in 6k rolls of a die. Then we have

: P(k)
khrgo V6 1.-5/2 -
- (271.)5/2k
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25. Call a “consecutive difference” the absolute value of the difference between two consecutive rolls
of a die. For example, the sequence of rolls 14351 has the corresponding sequence of consecutive
differences 3,1, 2,4. What is the expected number of times we need to roll a die until all 6 consecutive
differences have appeared?

We can solve this with a Markov chain.

Here, we can define the state to be a pair (d, S), where d is the latest roll of the die, and S is the set of
differences already achieved.

For computation, we can define a vector (aq, as, as, aq, as, ag) with a; = 1ifi € S, and a; = 0 if
1€ 8.

We can then convert the state pair (d, S) into a unique non-negative integer by
6 .
s=64(d—1)+ ) 2,
i=1

Thus, each state corresponds to a row of a 384 x 384 matrix.

We may define a 385th row (and column) corresponding to the absorbing, “finished” state, since once
we have achieved all differences, it does not matter what additional rolls occur.

We then calculate, for each state, the new state attained by rolling 1,2, ... 6 on the next roll and add
this information to create the transition matrix.

Here is some GP code that does this:

{

A=vector (6);

M=matrix (64*6+1, 64x6+1);

for (a0=0,1, for(al=0,1, for (a2=0,1, for (a3=0,1, for (a4=0,1, for (ab5=0,1,
for (d=1, 6,

A=[a0,al,a2,a3,ad,ab];

statel=64* (d-1)+sum(i=1,6,2" (i-1)*A[i]);
for(e=1,6,diff=abs(d-e);B=A;B[diff+1]=1;if (B==[1,1,1,1,1,11,
M[statel+l, 64x6+1]=M[statel+1l,64*x6+1]+1/6,

state2=64« (e-1)+sum(i=1,6,2" (i-1)*xB[1i]);

M[statel+l, state2+1]=M[statel+l,state2+1]+1/6;

) )

)

))))) )
M[385,385]1=1;
}

We then let the matrix @ be M with the last row and column removed, and calculate N = (I — Q) ™!
(as described in Appendix D).

If we sum rows 1, 1 + 64, 1 4 64 - 2, etc., we find that the expected number of rolls needed after
starting the sequence with a roll of d are (approximately)

23.77122103041073289277579517
25.27138286232360165381869693
25.50271996489307011817416107
25.50271996489307011817416107
25.27138286232360165381869693
23.77122103041073289277579517

NN WN =
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26.

and since each of these starting rolls is equally likely, the average of these, plus 1, yields the overall
expected number of rolls needed until all absolute differences have occurred:

672875275767847611958914137

56031560937606 728347794000 ~2 25.84844128587580155492288439.

Note that in the table above, a 1 or 6 on the first roll markedly reduces the expected number of rolls,
since we must roll a 1 and a 6 consecutively at some point, whereas all other differences can be
achieved in more than one way.

Suppose we roll six dice repeatedly as long as there are repetitions among the rolled faces, rerolling
all non-distinct face dice. For example, our first roll might give 112245, in which case we would keep
the 45 and roll the other four. Suppose those four turn up 1346 so the set of faces is 134456, and so we
re-roll the two 4 dice, and continue. What is the expected number of rolls until all faces are distinct?

(Problem suggested by Michat Stajszczak)
One way to investigate this process is by treating it as a Markov chain.

Define the states of the Markov chain to be the current number of unique die faces, 0, 1,2, 3,4, 5 or 6.
We start in state 0 and we are interested in how long, on average, it takes to get to state 6.

Then, we need to create the transition matrix for this chain.
This is a little tedious, so I will just give two examples here of the calculation of entries in the matrix.

The first entry, the probability of transitioning from state O to state 0, can be calculated like this. In
order to get no unique faces, we need to consider partitions of six without 1. There are four such
partitions: 6,4 + 2,3+ 3,and 2 + 2 4 2.

The 6 partition corresponds to rolling all identical dice: there are 6 ways to do this out of the 6°
possible rolls.

The 4 + 2 partition corresponds to rolling four of one face, and two of a different face. There are

6!

ways of doing this out of the 6° possible rolls.
Similarly, for the 3 + 3 partition, there are
6-5 6!
5 3131 300

ways, and for the 2 4 2 + 2 partition, there are

6\ 6!
-1
<3> ot — 180

ways, for a total of 2556 ways (out of 6%) to achieve no unique faces. Thus, the (0,0) entry in the

transition matrix is 5

One more example. Consider the transition from state 1 to state 3. If we are in state 1, with unique
face z, to get to state 3 there are two ways:

¢ aroll of the form abcce

 aroll of the form zxabc
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where a, b and c are distinct and not equal to x.

Of the 6° possible rolls, the first way occurs

5-4 5!
7'3‘5—600

5) 5!
(3) o= 600.

12
Thus, the (1, 3) transition probability is -

times, and the second occurs

In a similar manner, we can arrive at all the transition probabilities, and find the transition matrix is

256566 7380 18000 7200 10800 720 71 205 125 25 25

ot

66 66 66 66 66 0 66 1296 1296 324 162 108 0 324
426 1230 3000 1200 1800 (5 120 71 205 125 25 25 () 5
65 65 65 65 65 6° 1296 1296 324 162 108 324
62 178 504 192 336 g 24 8L 8 T 4 7 g L
6 64 64 64 62 61 648 648 8 21 27 54
A= 6 18 84 30 72 0o 8 | = 1 1 7 5 1 g 1
63 63 63 63 63 63 36 12 18 36 3 36
12 4 18 2 1 1 1 1

0 0 7 & & U g 0 0 5 5 20 g
5 1

0 0 0 0 % 0 % 0 0 0 0 g 0 3
0 0 0 0 0 0 1 0 0 0 0 0 0 1

0.0548 0.158 0.386 0.154 0.231 0.000 0.0154
0.0548 0.158 0.386 0.154 0.231 0.000 0.0154
0.0478  0.137 0.389 0.148 0.259 0.000 0.0185

~ | 0.0278 0.0833 0.389 0.139 0.333 0.000 0.0278
0.000 0.000 0.333 0.111 0.500 0.000 0.0556

0.000  0.000 0.000 0.000 0.833 0.000 0.167

0.000  0.000 0.000 0.000 0.000 0.000 1.00

Note that the first and second rows are identical. Also, the 5 state is unreachable, but it is simpler to
include it anyway.

Using the method of Appendix D, from A we can determine that the expected number of rolls until

all faces are distinct is
1692288

~ 31.0084 263.
FAETE 31.008483737975263

Here is a plot of the cumulative distribution of the number of throws:
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0.8 -
0.6 -
0.4 - .

02 7 .

20 40 60 80 100 120 140

About 49.35% of the time, state 6 has been reached on or before the throw 21, with about 51.02%
reached on or before throw 22.

We can see from the plot above that the most likely number of turns occurs quite early. In fact, the
most likely number of throws is 3, as suggested by this table:

n  probability of ending on throw n
1 0.01543209...

2 0.02757773...

3 0.03030101...

4 0.03026457...

5 0.02952035...
6

7

8

9

0.02861288...
0.02768562...
0.02677581...
0.02589256...

If we let E(n) be the expected number of turns that we will be in each state before ending, we have
the following values:

n E(n)
0 1.913064...
1 2.640448...
2 11.443151...
3 4.182134..
4 10.829683...
5 0
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27.

28.

So we will spend the most of our time in states 2 and 4.

3.2 Dice Sums

Show that the probability of rolling 14 is the same whether we throw 3 dice or 5 dice.

This seems like a tedious calculation, and it is. To save some trouble, we can use a computer algebra
system to determine the coefficient of z'4 in the polynomials (z 4 22 + 23 + 2% + 2° + 25)3 and
(z + 2% 4+ 23 + 2* + 2° + 25)® (see Appendix C for an explanation of this method). They are 15 and
540, respectively, and so the probability in question is 15 = 540 = 3

’ ’ 63 6° 72
Are there other examples of this phenomenon?

Yes. Let py(t, n) be the probability of rolling a sum of ¢ with n d—sided dice. Then:

« p3(5,2) = p3(5,3) = 2

9
 py(10,4) = py(10,6) =
. pa(9,3) = pa(9,4) = 332
* pe(14,3) = ps(14,5) = %
* po(15,2) = po(15,4) = -
o p20(27, 2) = p20(27, 3) = W?O

Questions: Are there others? Can we find all of them?

Show that the probability of rolling a sum of 9 with a pair of 5-sided dice is the same as rolling a sum
of 9 with a pair of 10-sided dice. Are there other examples of this phenomenon? Can we prove there
are infinitely many such?

Here, by a m-sided die, we mean a die with sides 1,2,...,m all with equal probability of being
thrown.
Since

L 9

1 o 3 a4, Y 1 10,2 09,3 5 4716 453, 2,
(5 (z+2° +2° + 2% +2°) TR TR e A e i

and

1 2
(10 (:E—I—x2+:v3+x4+m5+x6+$7+x8+x9—|—x10)>
L 90, 1 19 9 10,2 9 T8 1
00" T T 0" 2T " T 0"
we may conclude that the probability of rolling 9 with a pair of 5-sided dice is the same as with a pair
of 10-sided dice.

There are lots of examples. Here is a short table of some:

2
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sides1 sides2 sum

5 10 9
5 15 10
10 20 17
10 30 19
13 65 26
17 68 33

Are there infinitely many such examples? We have the following theorem.

Theorem 1 Let m be a positive integer. Then m — 1 is divisible by 8 or the square of an odd prime if
and only if there exist positive integers s1 and s2, s1 < S, such that the probability of rolling a sum
of m with a pair of s1-sided dice is the same as with a pair of sz-sided dice.

Proof: Let m be a positive integer. Suppose there exist s; and so as described in the theorem. From
the nature of the probability distributions of sums of a pair of dice, we can conclude that

m—1 2s;—m+1

52 s
or equivalently,
2518
m=1+— 22.
+ s
17T 52
Let r = ged(s1, s2), $1 = 2%, and §; = 2. Then
_g 17 2 ’ 1_ r>? 2_ r®
2T§1§%
m=1+ — 5 -
51+ 85

Let R = m — 1. Then we have
8R4+ 53R = 2151 53.

Note that, since s; < s2, we cannot have So = 1 and so there exists a prime p that divides $3. Hence,
p? divides R. If p = 2, we conclude that 8 divides R. Hence m — 1 is either divisible by 8 or by the
square of an odd prime.

Now, suppose m is a positive integer. Let R = m — 1. Suppose R is divisible by the square of an odd
prime or by 8. If R is divisible by an odd prime, let p be that prime; else, let p = 2.

Then let 5o = pand §; = 1. Let

1+p*R
r= —.
2 p?
Then
2T§1§%
F=wia
1 2
Let ) )
1 R 1 R
o= LEPIR g, = (L4PD)
2p? 2p
Then )
2518
m =1+ 21 22
s1 + 85

and so the probability of rolling a sum of m with a pair of s;-sided dice is the same as with a pair of
So-sided dice. H
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Thus, the infinite sequence of such sums begins 9,10, 17,19, 25, 26, 28, 33, 37,41, 46, 49, 50, ....

Questions: Is there a nice way to characterize the numbers of sides for which there exist another
number of sides for dice yielding equal sum probabilities? The sequence begins

5,10, 13, 15, 17, 20, 25, 26, 30, 35, 39, 40, 45, 50, 51, 52, 60, 65, 68, 70, 75, 78, 80, 85, 90, 100, . . . .

29. Suppose we roll n dice and sum the highest 3. What is the probability that the sum is 18?

In order for the sum to be 18, there must be at least three 6’s among the n dice. So, we could calculate
probability that there are 3,4,5,...,n 6’s among the n dice. The sum of these probabilities would be the
probability of rolling 18. Since n could be much greater than 3, an easier way to solve this problem is
to calculate the probability that the sum is not 18, and then subtract this probability from 1. To get a
sum that is not 18, there must be 0, 1 or 2 6’s among the n dice. We calculate the probability of each
occurrence:
5n
zero 6’s: the probability is o
n—1

one 6: the probability is

(n %7172
two 6’s: the probability is ~2

Hence, the probability of rolling a sum of 18 is

57 sl (5)5n2 5\" 9 1
1— = 2 =1—(=) (1+n+-—n?)=
<6n+ 6n T 6 <6> ( +50"*’50") p(n)

say. Then, for example, p(1) = p(2) = 0, p(3) = 1/216, p(4) = 7/432, and p(5) = 23/648.

30. Four fair, 6-sided dice are rolled. The highest three are summed. What is the distribution of the sum?

This is a quick calculation with a tiny bit of coding. In PARI/GP, the computation looks like this:

gp > A=vector (20);
gp > for(i=1,6,for(j=1,6,for (k=1,6,for (m=1, 6,
s=i+jt+k+tm-min(min (i, j) ,min(k,m));A[s]=A[s]+1l))))

gp > A
(o, o, 1, 4, 10, 21, 38, 62, 91, 122, 148, 167, 172, 160, 131, 94, 54, 21, 0, 0]

(The funny min(min(i,j),min(k,m)) bit is there because the default min function only works with two
values, and we want the minimum of ¢, j, k and m.)

If we define A(n) to be the number of rolls out of 64 which yield a sum of n, we have the following
table:
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31.

probability

1/1296 ~ 0.00077
1/324 ~ 0.00308
5/648 ~ 0.00771
7/432 ~ 0.01620
19/648 ~ 0.02932
31/648 ~ 0.04783
91/1296 ~ 0.07021
61/648 ~ 0.09413
37/324 ~ 0.11419
167/1296 ~ 0.12885
43/324 ~ 0.13271
10/81 = 0.12345
131/1296 ~ 0.10108
47/648 ~ 0.07253
1/24 ~ 0.04166
7/432 ~ 0.01620

How does this compare to the distribution of the sums of three dice?

We see the most likely roll is 13, compared to a tie for 10 and 11 with a simple roll of three dice.

_ 15869
= ——— ~ 12.2445987654...
1296

The mean roll here is — Z

simple roll of three dlce

Matthew M. Conroy

compared to a mean of 10.5 for a

Here is a histogram comparing the distribution of sums for the “roll four, drop one” and the simple

roll three methods.

]

3 4 5 6 7 8

9

10 11 12 13

14

15

16

17

18

Three fair, n-sided dice are rolled. What is the probability that the sum of two of the faces rolled

equals the value of the other rolled face?

There are two (classes of) ways this can happen.

One way is to get two distinct faces, a and b, with a appearing twice and b = 2a.
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The other is to get three distinct faces, a, b and ¢, with ¢ = a + b.

Let’s suppose we roll the dice and the faces that appear are a, b and ¢ with a < b < ¢ and the sum of
two of them equals the third.

We consider the two cases.

Case 1: If a = b, then ¢ = 2a, and so we must have a < {%J Since there are three permutations of
the set {a, a, 2a}, we see there are
n
3(5)
2

Case 2: If a < b, then ¢ = a + b < n and the number of choices of {a, b, c} is

Z Hb:a<b<n-—a}|l= Z (n—2a):LgJ(n—{%J—1)_

1<a<] 3]

ways for this to occur out of n? throws.

Since a, b, and c are distinct, there are six permutations of each possibility, and so there are

53 (=12 -

ways for this case to occur out of 13 total possible throws. Altogether, we have

l5]+6[3] (- [5]-1) = oo

ways for this to occur out of n? total possibile throws. One can verify the last equality by treating
even and odd n’s separately.

Forn = 2,3,4,5,6,... the last expression is 3,9, 18, 30,45, ... The values in this sequence are the
“triangular matchstick numbers” (see A045943 in the OEIS).

Thus the probability of this occurring is
3(n—1)
2n2
with the probability tending to zero as n tends to infinity.

45 5 -
For n = 6, the probability is iy 0.2083.

32. A fair, n-sided die is rolled until a roll of k or greater appears. All rolls are summed. What is the
expected value of the sum?

The probability that any roll is greater than or equal to k is
n+1—-k
n
so the expected number of rolls until a roll of k£ or greater is

_n
n+1—k

All but the last one of these rolls is less than £, so the expected value of the sum of these rolls is

(n-i-?;lb—k‘_l) 1+(];_1)‘
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We add to this the expected value of the final roll

k+n
2
and so the expectation of the entire sum is
n 14 (k-1) k+n  n’+n
n+1—k 2 2 2n—2k+2

We can also argue as follows. Let E be the expected value of the sum. On the first roll, the sum is
either less than £ or it is k or greater. If it is less, then we can express F like this:

k-1 1—k
E = ——({expected value of roll < k} + F) + L( expected value of roll > k)
n n

k—1 [k n+l—%k (k+n
= ~+E)+
n 2 n 2

From this we have

k—1
on(1 — JE=k(k—1)+(n+1-k)(k+n)=n*+n
n
from which we find
o n®+n
=2k +2

More explicitly, and without the assumption of the uniform distribution of the dice values, we may
write

n

k—1 1 1

i=k

_ k:—1<k:+E>+n+1—k‘<k‘+n>
n 2 n 2

33. A pair of dice is rolled repeatedly. What is the expected number of rolls until all eleven possible sums
have appeared? What if three dice are rolled until all sixteen possible sums have appeared?

and the rest follows as above.

This is an example of a so-called coupon collector’s problem. We imagine a person is seeking to
complete a set of n distinct “coupons”. Each day they get one coupon chosen at random from a finite
set of possible coupons (the set is replenished each day), and we wish to know how many days are
expected in order to get the complete set.

If the probability of each coupon appearing is the same as all others, the problem is fairly simple (see
problem 9). When the probabilities are not all the same, as is the case with the sums of pairs of dice,
it gets more complicated.

One way to solve this problem is to use Markov chains. This is conceptually straightforward, but a
bit computationally elaborate. As we roll the pair of dice, we consider ourselves in a state represented

by an 11-dimensional vector {az, as, - -- ,ai2), where a; = 0 or 1 fori = 2,---12, and a; = 1 if and
only if a sum of ¢ has been achieved thus far. We start in the state (0,0, -- - ,0) and we want to know
the expected number of rolls until we are in the state (1, 1,--- , 1) (this is our one absorbing state).
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Thus there are 211 = 2048 states to this chain.

From each state except the absorbing state, the probability of moving to another state is determined
by the probability of rolling each of the so-far unrolled sums.

We can create the transition matrix M for this process, and use it to calculate the expected value (see
Appendix D for more details on this method). The basic idea is to create a transition matrix M, and
from that take a sub-matrix @, from which the matrix N = (I —Q)~! is calculated. Then the expected
number of rolls needed will be the sum of the values in the first row of V.

Below is some GP code that creates the transition matrix and calculates the expected value.
A helpful idea here is to assign each state a positive integer via the map

12

S((CLQ, ag, - 7a12>) - Z Qi_zai

=2

S0 we can represent each state as a positive integer, rather than as a vector.

A=vector (11);

S(A)=sum(i=1,11,2" (i-1)*A[i]);

p=sum(i=1,6,x"1)*1/6;

B=vector (12);

for(i=2,12,B[i]l=polcoeff(p"2,1,x));

M=matrix (2048,2048); \\ allocatemem() as needed to get the required memory
for (a2=0,1, for(a3=0,1, for (a4=0,1, for (a5=0,1, for (a6=0,1,\

for(a7=0,1, for(a8=0,1, for(a9=0,1, for (al0=0,1, for(all=0,1, for (al2=0,1, \
A=[a2,a3,ad4,a5,a6,a7,a8,a9,al0,all,al2];\

s0=s (A); \
for(j=2,12,C=A; if (A[J-1]1<1,C[j-1]1=1;M[s0+1,s(C)+11=B[j1;));\
M[s0+1,s0+1] = sum(j=2,12,B[]1*A[§-11);\

)))))))))))
print ("Found M.");
QO=matrix (2047,2047);

print ("Now we have Q.");

for(i=1,2047,for (3=1,2047,QI[41i,J1=MI[1, 31));
N=(matid(2047)-Q) " (-1)

print ("Now we have N.");

printl ("The expected value is ",sum(3=1,2047,N[1,3]));

The expected number of rolls is

769767316159

19574325400 61.217384763957....

In [?] (equation 14b) , the authors give the following formula for calculating such an expected value:

where m is the number of “coupons”, .J is a subset of all possible coupons, and Py = ) jea P where
p; is the probability of drawing the j-th coupon on any turn.

This requires, essentially, summing over the power set of the set of all coupons. Here is some PARI/GP
code that finds the expected value using this formula:
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A=vector (11);

p=sum(i=1,6,x"1)*1/6;

B=vector (12);

for(i=2,12,B[i]=polcoeff(p"2,1,x));

E=0;

for (a2=0,1, for(a3=0,1, for (a4=0,1, for (a5=0,1, for (a6=0,1,\
for(a7=0,1, for(a8=0,1, for (a9=0,1, for(al0=0,1, for(all=0,1, for (al2=0,1,\
A=[a2,a3,a4,a5,a6,a7,a8,a9,al0,all,al2];\
g=sum(i=1,11,A[i]);\

P=sum(i=1,11,A[1i]*B[i+1]);\
if(P<1l,E=E+(-1) " (11-1-q)*1/(1-P));\

)))))))))))

print (E) ;

This is definitely a more efficient way to compute this: on one machine, this code takes about 1/10000
as much time as the Markov chain method.

With a small modification to the above code, we can find the expected number of rolls until all sixteen
possible sums are attained when rolling three dice. The expected value is

32780408650180616717098566081494549422317059377168943326909666810782193227427941243843

96853626249252584111109636978626695927366864056199200661045945395107914269245971600
which is about 338.45308554395589, and here is the PARI/GP code:

A=vector (16);

p=sum(i=1,6,x"1)*1/6;

B=vector (18) ;

for (i=3,18,B[i]=polcoeff (p~3,1i,x));

E=0;

for (a3=0,1, for(a4=0,1, for(a5=0,1, for(a6=0,1,\

for(a7=0,1, for(a8=0,1, for(a9=0,1, for(al0=0,1, for(all=0,1, for (al2=0,1,\
for (al3=0,1, for(al4=0,1, for(al5=0,1, for(al6=0,1, for(al7=0,1, for(al8=0,1,\
A=[a3,a4,ab,a6,a7,a8,a9,al0,all,al2,al3,al4,al5,al6,al7,als8];\
g=sum(i=1,16,A[1i]);\

P=sum(i=1,16,A[1i]*B[1i+2]);\

1f (P<1,E=E+(-1) " (16-1-q)*1/(1-P));\

1)) )G

print (E);

34. A die is rolled repeatedly and summed. What can you say about the expected number of rolls until the
sum is greater than or equal to n?

When a six-sided die is rolled, the expected value of the roll is %

2 n
So, to reach a sum of n, we expect to need about ?n =35 rolls.

That’s very rough. Let’s find a more precise expression of the expected value.
Define E,, to be the expected number of rolls until the sum is at least n.
Then g = 0and F; = 1.

Since on the first roll, there is a 5/6 probability of getting at least 2, and, if we don’t, the sum will be
at least 2 after the second roll, we have
1 7

Ey=14>=—.
2= 15756
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Thatis, By = 1+ L E1.

Suppose n = 3. On the first roll, we will get 3 or greater with probability 4/6. If we get a 1, then the
expected number of additional rolls is Eo, and if get a 2, then the expected number of additional rolls

is F1. Hence, ) . 19
Es=1+-F —Fy = —.
3 + 6 1+ 6 2 36

In the same way,

1 1 1 343
Ey=1+-Ej 4+ -FEy+ -Fy =
1= gt gt ghs = o
1 1 1 1 2401
B:—=14-FE 4+ -Ey+ -Fs+-E; = ——
5 +6 1+6 2+6 3+6 4 1296
1 1 1 1 1 16807
Eo=1+-Ei+-FEy+ -Fs+ -Ey+ —-Fs = —_
6= 1h it gt ghs T ghat 5hs = og

Suppose n > 6. In order to reach a sum of at least n, the final roll must be 7 after achieving a sum of
at least n — 7. Hence,

6

1

En=1+¢ > B (3.13)
i=1

To help us study E,,, we will find a generating function for F,,. Define

oo

flx) = Z E,z".
n=0

We wish to find a simple, closed-form expression for f.

Multiplying equation 3.13 by 2 and summing from n = 6 to co we have

o) 00 1 6
Y EBnat =) <x" +5 ZETL_Z[BTL> . (3.14)
n=~6 n=~6 i=1
k .
Define fi(x) = Z E;x'. Then equation 3.14 yields
i=0

flx) = fs(x) =

00 1 6 ]
= Z x4+ 6 Z <Z En—i$n>
n=>6 i=1 \n=6

76

1 & 1 & 1 & 1 &
— - E_n - E_TL - E_’Il - E_n
1_x+67§n1x+6;n2x+ +6§n5x+67§n6$

_ - E " - B " - E " - E "
D P w e PP

T1-=x + gx n=5 Fnt 63:2 n=4 et 6x5 n=1 o gxﬁ n=0 o
_ 20 1 1, 1 5 1 6
= a(f(@) — fi@) + (@) = fo(@) + e a(F (@)~ folw)) + ot f (@)
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Using the fact that fo(z) = 0 and simplifying, we have

6

x 1 2 6
1—x+6($+$ +---+2°) f(z)

(zfa(@) + 22 f3(2) + 2° fo(2) + 2* fi(2)).

F(&) ~ fola) = -5

Since the f; are just polynomials, we can solve this for f(x) and find that

6x 6x

J(w) = 2T —Tr+6  (x—1)2(2 + 227 + 323 + 422 + 5z + 6)

Applying the method of partial fractions, we find

2/7 4/21 Z (22" + 323 — 10z — 30)
(=12 2-1 25+22443234+422+52+6

fz) =
2 — 4 &
= ?Z(n+1)x"+52x”+Z(aB)
n=0 n=0
oo
2 10
:Z —n+ — | z" + Z(x), say.
o 7 21

The poles of Z(x) are approximately

—1.491797988139901,
— 0.805786469389031 £ 1.222904713374410z,
and 0.551685463458982 £ 1.253348860277206s.

The minimum modulus among these poles is R = 1.3693941054897684. As a result, the n-th coeffi-
cient a,, of the power series of Z(x) satisfies

an =0 ((11%)”) = 0(0.73024997").

(See, for example, [?], (June 26, 2009 edition), Theorem IV.7 (Exponential Growth Formula), page
244)).

Thus, we may conclude that

2 1
B, = n+ % +0(0.73024997™).

So, E, is very closely approximated by %n + % for all but the smallest values of n.

Here is a short table of values. Let g(n) = 2n + 32,
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n E, g(n) E, — g(n)

1 1 ~ 1.000000000 0.7619047619 0.2380952381

2 7/6 ~ 1.166666667 1.047619048  0.1190476190

3 49/36 ~ 1.361111111 1.333333333 0.027777TT778

4 343/216 ~ 1.587962963 1.619047619 —0.03108465608
5 2401/1296 ~ 1.852623457 1.904761905 —0.05213844797
6 16807/7776 ~ 2.161394033 2.190476190 —0.02908215755
7 117649/46656 ~~ 2.521626372 2.476190476 0.04543589555

8 776887/279936 ~ 2.775230767 2.761904762 0.01332600513

9 5111617/1679616 ~ 3.043324784 3.047619048 —0.004294263859

10 33495175/10077696 ~ 3.323693729 3.333333333  —0.009639604132

15 4.760008377 4.761904762  —0.001896385320

20  6.190195199 6.190476190  —0.0002809914888

25  7.619081612 7.619047619  0.00003399272215

30 9.047634594 0.047619048  0.00001554676498

35  10.47619480 10.47619048  0.000004327490791

40  11.90476290 11.90476190  0.0000009934675945
45  13.33333351 13.33333333  0.0000001795084385
50  14.76190478 14.76190476  0.00000001842084560
60  17.61904762 17.61904762  —0.000000000990023724
70 20.47619048 20.47619048  —8.20317511 x 10~11
80  23.33333333 23.33333333  —1.896370261 x 1012
90  26.19047619 26.19047619  6.32378328 x 1014

100 29.04761905 20.04761905  6.478729760 x 1015

We see that E,, is extremely closely approximated by %n + % as n gets large.

35. A die is rolled repeatedly and summed. Show that the expected number of rolls until the sum is a

multiple of n is n.

We will treat small n first. We will use the fact that the expected number of additional rolls until the
sum is a multiple of n depends only on the residue class of the sum modulo n (e.g., the expected
number of additional rolls until the sum is a multiple of 4 is the same whether the sum is 3, 7, 11, or
any other value congruent to 3 modulo 4).

Let n = 2. Then the expected number of rolls, £ until the sum is a multiple of n is
E=1+ L E
= 5

and ]
Ei=1+ §E1

where F is the expected number of additional rolls from an odd sum (i.e., a sum congruent to 1 mod
2). These equations arise from the fact that half of the values {1,2,3,4,5,6} are even and half are
odd, so there is a one-half chance of the first roll ending in an odd sum, and from there, a one-half
chance of staying with an odd sum. These two equations easily lead to £ = 2.

Let n = 3, and let E be the expected number of rolls until the sum is a multiple of three, and E; and
E)5 be the expected number of additional rolls from a sum congruent to 1 or 2 mod 3. Then we have

1 1
E=1+_E1+ E

3 3
E —1+1E +1E
1= g1t gk
E. —1+1E +1E
2= g1t gk
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As in the n = 2 case, the fact that {1,2,3,4,5,6} are uniformly distributed mod 3 results in three
identical expressions, and so we find £ = F; = Fy = 3.

The n = 4 case is a little different, since {1, 2, 3,4, 5,6} is not uniformly distributed modulo 4. As a
result, our equations, following the scheme above, are

1 1 1
E=1+§E1+*E2+7E3

3 6
E1:1+éE1+%EQ+%E3
E2=1+éE1+éE2+éE3
By=1+ 2By + B+ By

Solving this system, we find £} = %, Ey = %, FE3 = %, and F = 4.

The n = 5 case is similar. We have

1 1 1 1
E:1+§E1+*E2+*E3+*E4

6 6 6

1 1 1 1
Fi=1+-F -F —-F -F
1 —|—6 1+3 2—|—6 3+64

1 1 1 1
Ey=1+-F -F —-F -F
2 +6 1+6 2+3 3+6 4

1 1 1 1
Fy3=1+-F -F —-F -F
3 +6 1+6 2+6 3+3 4

1 1 1 1
E,=1+-F -F —-F -F
4 —1-6 1+6 2+6 3+6 4

: : 1554 1548 1512 1296
Wthh ylelds El - W’Eb - 3T’E3 — 3T7E4 - W andE — 5

For n = 6, we can conclude more easily. Since {1,2,3,4,5,6} is uniformly distributed modulo 6, we
have ¥ = 4 = Fh = F3 = E4 = Es5 and so
5
EFE=1+-F
+ 6

and thus £ = 6.

Suppose n > 6. Define E' and E; as above. Then we have the following system of equations.

1 1
E=1+ B+ +  E

6
E —1—|—1E + —l—lE
1= 6 2 6 7
1 1
En7=1+-FEp ¢+ -+ -Ey
6 6
1 1
En—G =1+ gEn—5 + -+ gEn—l
1 1 1
En—5:1+6En—4+"'+6En—1+6E1
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1 1 1 1
E, 4=1+-F,_ e+ =K, —-F —-F
n—4 —1-6 n—3 + +6 n1+6 1+6 2
E —1+1E + +1E +1E+ 1E
n—3 — 6 n—2 6 n—1 6 1 6 3
E —l—l—lE + —l—lE —i—lE—i— 1E
n—2 — 6 n—1 6 n—1 6 1 6 4

1 1
Ey1=1+_F +--+-Fs

6 6

Summing, and counting, we have

and so & = n.

n—1 n—1 1 n—1
E+2Ei:n+26'6Ei:n+ZEi
=1 =1 =1

Matthew M. Conroy

A curious feature of this is that a uniform distribution of dice values is actually not necessary to have
n rolls be the expected value. A variety of other kinds of die distributions (appear to) yield n also. So
a question is: what are necessary conditions on the values of a die so that n is the expected number of
rolls until the sum is a multiple of n?

36. A fair, n-sided die is rolled and summed until the sum is at least n. What is the expected number of

rolls?

To solve this, we will use some recursive expressions.

Let E(m) be the expected number of rolls until the sum is at least n, starting with a sum of m.

Then we have:

E(n) =

En-1)=1

E(n—2):1+lE(n—1):1+*

1
n n

E(n—3):1+lE(n—2)+%E(n—1)

E(n—4) =1+ ~E(n—3)

Suppose

forl1 <k<r.

n

1 1 1
=14+—-(1+—-FE(n-1 —
+la tpmon)e !
2 1
:1+*+72
n n

n

3. 3 1
=14+=+=

n
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Then

—\r r+1
k—1 (k:—ll)
Thus by induction, we have E(n — k) = Z = forl <k<n
n
i=0
The value we seek is F(0):
n—1 m—1 n—1
- 1
B(0) = (ﬁi) - (1 n>
=0

We observe the curiosity that as n — oo, E(0) — e.

We have the following values:

n E(0) exact E(0) approx.
I | 1.0000
2 3/2 1.5000
3 16/9 1.7778
4 125/64 1.9531
5 1296/625 2.0736
6 16807/7776 2.1614
7 262144/117649 2.2282
8 4782969/2097152 2.2807
9 100000000/43046721 2.3231
10 | 2357947691/1000000000 | 2.3579
20 2.5270
100 2.6780
500 2.7101
1000 2.7142

37. Adie is rolled and summed repeatedly. What is the probability that the sum will ever be a given value
x? What is the limit of this probability as © — o0?

Let’s start by considering 2-sided dice, with sides numbered 1 and 2. Let p(z) be the probability that
the sum will ever be . Then p(1) = 1/2 since the only way to ever have a sum of 1 is to roll 1 on the
first roll. We then have p(2) = 1/2 + 1/2p(1) = 3/4, since there are two mutually exclusive ways to
get a sum of 2: roll 2 on the first roll, or roll a 1 followed by a 1 on the second roll. Now, extending
this idea, we have, for > 2,

1 1
p(z) = ip(:c -1+ 517(35 - 2). (3.15)
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This equation could be used to calculate p(x) for any given value of x. However, this would require
calculating p for all lower values. Can we get an explicit expression for p(z)?

Equation 3.15 is an example of a linear recurrence relation. One way to get a solution, or explicit
formula, for such a relation is by examining the auxiliary equation for equation 3.15:

xz—lx—l—}
2 2
or . )
2—7 —_ - =
x 2:1: > 0

The roots of this equation are
1
=land f=—=
« and 3 5

A powerful theorem (see Appendix E) says that
1 n
p(n) =Aa"+Bp"=A+B (—2)

for constants A and B. Since p(1) = 1/2 and p(2) = 3/4 we can solve for A and B to find that
(n) 2 n 1 1\"
nN=-+-(-=] .
P =373 2

1 4 16

p(1) = ,p(2) = 9 and p(3) = o7

For 3-sided dice, we have

with, for n > 3,

p() = 5 (bl = 1) +pln = 2) +pln = 3) = 3 " pln =),

The characteristic equation for this recurrence equation can be written
322 —2? —x—1=0

which has roots

1 V2 1 V2
a=1=-3—- 5 ady=—g+3
Using these, and the fact that
1 4 16
1) =—-,p(2) ==, and p(3) = —
p(1) = 3,p(2) = g, and p(3) = o,
we find 1 )
_ = - an -an
p(n) =5+ 8" + 7"

Since (3 and y are complex conjugates, and, in any case, p(n) is always real, we might prefer to write

p(n) like this: )
p(n) = % + % <\}§> cos (n <72T +tan~! %))
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Using this formula to generate a table, we see that while p(n) is asymptotic to the value 1/2, it wobbles

quite a bit:
z [ p(z) p(x) —plz = 1)
I | 0.3333333333333333333333333333
2 | 0.4444444444444444444444444444 | 0.1111111111111111111111111111
3 ] 0.5925925925925925925925925925 | 0.1481481481481481481481481481
4 | 0.4567901234567901234567901234 | -0.1358024691358024691358024691
5 | 0.4979423868312757201646090534 | 0.04115226337448559670781893002
6 | 0.5157750342935528120713305898 | 0.01783264746227709190672153636
7 | 0.4901691815272062185642432556 | -0.02560585276634659350708733424
8 | 0.5012955342173449169333942996 | 0.01112635269013869836915104404
9 | 0.5024132500127013158563227150 | 0.001117715795356398922928415384

10 | 0.4979593219190841504513200901
11 | 0.5005560353830434610803457015
12 | 0.5003095357716096424626628355
13 | 0.4996082976912457513314428757
14 | 0.5001579562819662849581504709
15 | 0.5000252632482738929174187274
16 | 0.4999305057404953097356706913
17 | 0.5000379084235784958704132966
18 | 0.4999978924707825661745009051
19 | 0.4999887688782854572601949643
20 | 0.5000081899242155064350363887

-0.004453928093617165405002624938
0.002596713463959310629025611496
-0.0002464996114338186176828660183
-0.0007012380803638911312199598200
0.0005496585907205336267075952194
-0.0001326930336923920407317435396
-0.00009475750777858318174803604667
0.0001074026830831861347426052109
-0.00004001595279592969591239145842
-0.000009123592497108914305940764722
0.00001942104593004917484142432929

Let’s skip over 4- and 5-sided dice to deal with 6-sided dice. Let p(z) be the probability that the sum

will ever be . We know that:

and for x > 6,

p(1) = %
p(2) = é + ép(l) - %
= é + ép(2) + %p(l) - 2‘%
+ ép(?’) + %p@) + ép(l) - %936
p(4) + ép(fi) + ép@) + ép(l) - %
ép(zl) + ép(?)) + ép(Q) + %p(l) _ %

The corresponding characteristic equation

625 —

has roots, approximately,

A =1

ZC5—$

Lo —r—-1=0

Az = —0.67033204760309682774
Az = —0.37569519922525992469 — 0.57017516101141226375¢

Ay = A3

As = 0.29419455636014167190 — 0.66836709744330106478:

A= As
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Solving the system of equations

p(J

1

Weﬁndq:%andcfi:ffori:Q,.

7
Hence, we may express p(n) as

p(n) =

6
)= Al j=1,...,6
1=1

LT

=N
|

1 6
+o ) AP
=2

Matthew M. Conroy

Since all the A; except A1 have absolute value less than one, we may conclude that

2
lim p(n) = =.

n—00 7

Here’s a table of the values of p(z) and p(x) — p(x — 1) for x < 20:

z [ p(z) p(z) —plz — 1)

T | 0.1666666666666666666666666666

2 | 0.1944444444444444444444444444 | 0.027777777777777777777777777717

3 1 0.2268518518518518518518518518 | 0.03240740740740740740740740740

4 | 0.2646604938271604938271604938 | 0.03780864197530864197530864197

5 | 0.3087705761316872427983539094 | 0.04411008230452674897119341563

6 | 0.3602323388203017832647462277 | 0.05146176268861454046639231824

7 | 0.2536043952903520804755372656 | -0.1066279435299497027892089620

8 | 0.2680940167276329827770156988 | 0.01448962143728090230147843316

9 | 0.2803689454414977391657775745 | 0.01227492871386475638876187573
10 | 0.2892884610397720537180985283 | 0.008919515598274314552320953784
11 | 0.2933931222418739803665882007 | 0.004104661202101926648489672418
12 | 0.2908302132602384366279605826 | -0.002562908981635543738627618117
13 | 0.2792631923335612121884963084 | -0.01156702092667722443946427417
14 | 0.2835396585074294008073228155 | 0.004276466173868188618826507133
15 | 0.2861139321373954704790406683 | 0.002574273629966069671717852795
16 | 0.2870714299200450923645845173 | 0.0009574977826496218855438489728
17 | 0.2867019247334239321389988488 | -0.0003695051866211602255856684957
18 | 0.2855867251486822574344006235 | -0.001115199584741674704598225314
19 | 0.2847128104634228942354739637 | -0.0008739146852593631989266598476
20 | 0.2856210801517331745766369062 | 0.0009082696883102803411629425406

Here’s another proof that p(n) approaches % (proof idea from Marc Holtz).

First, let’s define a sequence of vectors v(7):

v(i) = (p(i),p(i — 1), p(i — 2),p(i — 3),p(i — 4),p(i = 5)).

If we then define the matrix M:

Then it’s not hard to show that

OO
SOOI
SOOI
OO OO
RO OO O+
SOOI+

Muv(i) =v(i+1)

What we are interested in, then is M *“v(j) = lim v(i), where j is any finite value (but we may as
11— 00

well take it to be six, since we’ve calculated p(1),...

,p(6) already
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Note that each entry of M is between O and 1, each row of M sums to one, and M 6 has no zero entries:

16807 9031 7735 6223 4459 2401
46656 46656 46656 46656 46656 46656
2401 2401 1105 889 637 343
7776 7776 7776 7776 7776 7776
343 343 343 127 91 49
6 1296 1296 1296 1296 1296 1296
MP= | 49 a9 a9 a9 13 7
216 216 216 216 216 216
LA S S S S
6 36 6 36 36 36
1 1 1 1 1 1
6 6 6 6 6 6

So, we can consider M to be a transition matrix of a regular Markov system. Hence M is a matrix
with all identical rows given by the vector w where the sum of the entries of w equals 1, and

wM = w.

A little simple algebra shows that

/25 412 1
YEN\T e 21 721 21

Hence, v(00) is a vector of six identical probabilities equal to

2
cu(6) = =
w - v(6) -
Thus, lim

1—00

More questions:

(a) Notice that while p(z) is settling down on %, it does so quite non-monotonically: p(z) increases

to its maximum at x = 6, and then wobbles around quite a bit. Is the sequence p(7) eventually
monotonic, or does it always wobble?

38. A die is rolled and summed repeatedly. Let x be a positive integer. What is the probability that the
sum will ever be x or x + 1? What is the probability that the sum will ever be x, © + 1, or x + 27
Etc.?

In the previous problem, we worked out the probability that the sum will ever be x. Let p(z) be
this probability. Then, with inclusion-exclusion, we can work out the sought probabilities for this
problem.

The probability that the sum is ever x or  + 1 is
p(@) +plz+1)—¢

where ¢ is the probability that the sum will be both x and x + 1. Since the only way that can happen
is for the sum to reach = and then one appears as the next die roll, the probability is

q = p(z) <é> ,
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Thus, the probability that the sum is ever z or z + 1 is
5
61?(35) +p(z+1).

Since p(x) approaches % as = goes to infinity, we can conclude that the probability that the sum will
ever be x or x + 1 is asymptotic to % ~ 0.5238095.

Now, let’s consider the probability that the sum will ever be z, z + 1, or = + 2.

Let P(S) be the probability that the sum will ever be in the set S. Let A,, be the event that the sum is
ever equal to n.

By inclusion-exclusion,
Pz} U{z+1}Uu{z+2}) = P{z}) + P{x + 1}) + P({z + 2})
—P{{z}n{z+1}) —P{x}n{z+2}) - PH{z+1}n{z+2})+ Pz} n{xz+ 1} Nn{x+2})

= p(@) +p(@+1) +plz +2) - p(x) <(1;> —p() <376> A (é) o) (316>

= 2p(a) + 2pla+ 1)+ pla +2)

Thus, as x goes to infinity, the probability that the sum will ever be z, x 4+ 1 or = + 2 approaches

2 ~0.7142857.

Now, let’s consider the probability that the sum will ever be x, x + 1, x + 2 or = + 3.

If this happens, then the sum will either be z, or it will be at least one of  + 1, z + 2 and = + 3. Using
the calculation we just did, and a tiny bit of inclusion-exclusion, we can conclude that the probability
that the sumiseverx, z + 1,x + 2orx + 3 is

p(a)+ <§p(x P14 opla+2) 4l + 3)) —p(x) (;) = SP(@) b plat1) b plak2) bp(a+)

(This p(z)2 bit is due to the probability that the sum is z and one of z + 1, # + 2 and  + 3 is equal
to p(z) times the probability that the roll after hitting « is less then 4 (i.e., 1/2).)

Thus, as z goes to infintiy, the probability approaches % (% + % + % + 1) = g.

Now, let’s consider the probability that the sum will everbe x, x + 1,z + 2, x + 3 or z + 4.
Just like the last case, we can utilize the previous calculation and find that the probability is

p(z) + (;p(fb +1)+ gp(w +2)+ gp(x +3) +ple+ 4)) - p() (2)

1 1 2 5
= gp(a:) + 5p(a: +1)+ gp(ac +2) + gp(ac +3) +p(xz +4).
Thus, as x approaches infinity, the probability approaches % (% + % + % + % + 1) = % ~ 0.952380...

This is, of course, as far as we can go, since the sum is guaranteed to hit at leastone of x, x + 1, x + 2,
x4+ 3,z + 4 and z + 5 for every .
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39. A die is rolled once; call the result N. Then N dice are rolled once and summed. What is the
distribution of the sum? What is the expected value of the sum? What is the most likely value?

What the heck, take it one more step: roll a die; call the result N. Roll N dice once and sum them,
call the result M. Roll M dice once and sum. What'’s the distribution of the sum, expected value, most
likely value?

Since each of the possible values {1,2,3,4,5,6} of N are equally likely, we can calculate the distri-
bution by summing the individual distributions of the sum of 1, 2, 3, 4, 5, and 6 dice, each weighted
by %. We can do this using polynomial generating functions. Let

1
“(z+2%+2° + 2t +2° +20).

p= gl

Then the distribution of the sum is given by the coefficients of the polynomial

=1
_ 1 36 1 35 7 34 7 33 7 32 7 31 77 30
= 270036% 166567 T 93312° T 34002° 138520 < 7776° T 46656°

131 59 130 e 469 . 889 o 301 . 4697 o, 245 o
16656~ T 31104° T 690s4” To3312” T 233287 T 270036% T 11664"
23 ., 691 o 1043 o, 287 4o 11207 4 497 . 4151
10363° T 233287 T 31104% T 7me” T 279036% T 11664 T 93312
3193 15 1433 4, 110 g5 TAO g, 2275 g TA9 4 3269
69984 31104 2592 15552 16656 15552 69984
4169 ¢ 493 5 16807 o 2401 5 343 . 49 7 1

033127 T 11664" T 279936° T 466567 776" T 1206 +f6x T

104

To get the expected value E', we must calculate
36
E =Y id
i=1

LN 9  (7\?
where D = Z d;x". This works out to F = 1= <2> = 12.25.
i=1

More simply, one can calculate the expected value of the sum as follows, using the fact that the
expected value of a single roll is 3.5:

1
E=(35+2x35+3x35+ - +6x3.5) =125

12

1255 1 8279 1
Since Z di = —— Z , we can say that the median value is between
2592 15552

11 and 12
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1072

coefficient of z°

| | | | | | | | | | | | | | | | | |
0O 2 4 6 &8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
1

You can see from the plot of the coefficients of D that 6 is the most likely value. It is perhaps a bit
surprising that there are three “local maxima” in the plot, at7 = 6,11, and 14.

Okay, now lets do one more step.

After rolling the dice, getting a sum of N, and then rolling N dice, the sum distribution is

6
Di=)Y"
=1

as above. The coefficient of z' in D then gives us the probability that the sum of 4. Hence if we call
the sum M and then roll M dice once, the sum distribution is given by

pi

| =

36
D2 = Z D1 (Z)pl
i=1
where D1 (4) is the coefficient on z’ in D1.

Now, Ds is a degree 216 polynomial with massive rational coefficients, so there is little point in
printing it here. Let Dy (i) be the coefficient on 2" in Ds.

We can find the expected value of the sum as

40 41
1 1
Since Z Dy(i) < 3 and Z Dy(i) > 3 we can say that the median sum is between 40 and 41.
i1 i=1

Here’s a plot of the distribution:
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Here’s a plot showing just the coefficients of z* for small values of i. There are local maxima at i = 6,
1 = 20 (the absolute max), and ¢ = 38, and a local minimum at 7 = 7 and ¢ = 30.
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7

40. A die is rolled once. Call the result N. Then, the die is rolled N times, and those rolls which are
equal to or greater than N are summed (other rolls are not summed). What is the distribution of the
resulting sum? What is the expected value of the sum?

This is a perfect problem for the application of the polynomial representation of the distribution of
sums.

The probability of a sum of k is the coefficient on z* in the polynomial

1/1 1/1 ‘ 2
6<6(:c+x2+x3+x4+x5+x6)>+6(6(1+x2+x3+x4+x5+x6)> +
1 1 3 4 5 6 ’ 1 1 4 5 6 4
6<6(2+x +zt 4z —i—x)) +6<6(3+x +x +x)> +
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é(é (4+x5+x6)>5+é <é (5+956)>6

_ 1 36 1 30 5 29 5 28 5 27 5 26 1 25
= 570036" T 776% T a6656° 233287 T 233287 T 46656 | 466560
59 o4 13 o5 5 99 11 o 67 90, 1 19
511047 5832’ T 12067 T 20167 T 233287 T ame” T
117 49 0 23 47 7 46, 16 45 1 44 1 43
6098a” T 12067 Tass® Tt Tst Tt T
6781 ,, 47 4, 37T 45 67 o 19 ¢ 1 -
033127 T 7207 Trs32” T1a06” Taze” Tt T
8077 g, 565 5 T 4 5 g 1, 1 27700
16656" ' 5332 1087 T 108" T 27" T 36" T 279936
So, that’s the distribution. Here’s a plot of the distribution:
T T T T
0.15 |
s
[
8 0.1¢ -
o
5
Q
&
(0]
3 5.10"2 |
0 |
| | | | | | |
0 5 10 15 20 25 30 35 40

1

The expected value is simply the sum of i times the coefficient on 2’ in the distribution polynomial.
The result is 152 = 7.38888....

104077
The probability that the sum is 5 or less is 579936 0.3717... while the probability that the sum is 6
152539
or less is 579936 0.5449..., so we would say the median sum is somewhere between 5 and 6.

41. Suppose n six-sided dice are rolled and summed. For each six that appears, we sum the six, and reroll
that die and sum, and continue to reroll and sum until we roll something other than a six with that die.
What is the expected value of the sum? What is the distribution of the sum?

Each die is independent, so we can work out the distribution for a single die, and get everything we
need from that.

To start, we can note that the expected value E/ when rolling a single die satisfies

1.1, 1, 1, 1_ 1
B=clt o2+ 34 cd+ 25+ (64 )

and so E' = 4.2, so with n dice, the expected sum is 4.2n.
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The first thing we might notice is that the probability of getting a score of 6+ k, for any non-negative

m,and k € {1,2,3,4,5} is
1 m+1

Note that it is not possible to score a multiple of 6.

We can create some generating functions (that is, power series where the coefficient on ™ is the
probability of getting a final sum of m). For scores congruent to 1 mod 6, we have

1 1 - 1 43 x

T+ ST + " + = —

6 62 63 6 — 26
The generating function for congruence class & mod 6 is x* times this, so the overall generating
function for a single die is

v+ + 3+t +2° 20 — 2

6 —af ~ (z—1)(6 — )

So, when rolling r dice, the generating function for the sum is

e "
(x —1)(6 —ab) ) ~
Thus, the probability that the sum is & is the coefficient on 2% in the power series representation of the
above generating function.

Here’s an example of how to calculate with this. Suppose we roll 5 six-sided dice, and want to know
the probability that the sum will be greater than 20. We calculate the probability that the sum will be
less than 20 by truncating the generating function to the 19th degree for a single die and raising it to
the fifth power. Let

1

_ 19, 14 14 15 1, 15 149 14
Q—6x+6x+6x+6x+6x+36x+36$+36x+36x

1 11 1 13 1 14 1 15 1 16 1 17 1 19
367 Toe” T26" o167 Ta26” 2167 T 1206”
Then, raising @ to the fifth power, we have
1 . 5 ¢ 5 . 35 4 35 o 121 ., 1115 4, 1555 o,
7767 T et T 25027 T 776" T 3sss”t T 76t T 166560 | 46656

665 5 2365 i, 659 5 2795 & 5695 . 5635 o 5495
—X xr Xz —X Xz xr —X
15552 46656 11664 46656 93312 93312 93312

Summing the coefficients of Q> up to z'? gives us

—+

44711
93312’

the probability that we score less than 20 when rolling 5 dice. And so, the probability that we score

20 or more is
44711 _ 48601

93312 93312
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42. A die is rolled until all sums from 1 to x are attainable from some subset of rolled faces. For example,
if x = 3, then we might roll until a 1 and 2 are rolled, or until three 1s appear, or until two 1s and a
3. What is the expected number of rolls?

I don’t have a solution for a general z, but here are some thoughts.
If z = 1, then the expected number of rolls is 6.

Let z = 2. The expected number of rolls until a 1 or 2 is rolled is 3, and these two outcomes are
equally likely. If we rolled a 1, then we need to roll a 1 or a 2, which takes 3 rolls on average. If we
rolled a 2, then we must roll a 1, which takes 6 rolls on aveage. Hence, the expected number of rolls
is

1, 156

E2:3+%(3)+7(6) 5

2 7.5.

We can do the same thing with x = 3:

1 1 1
B3 = 2+§( expected number of rolls after a 1 )+§( e.n. of rolls after a 2 )+§( e.n. of rolls aftera 3 ).

After rolling a 1, we roll until a 1, 2 or 3 appears. If a 1 appears, then we need toroll a1, 2 or 3. If a
2 appears, we are done. If a 3 appears, then we need to roll a 1 or a 2. Hence the expected number of
rolls after rolling a 1 is

1 1

After rolling a 2, we roll until a 1 appesrs, which requires 6 rolls on average. After rolling a 3, we still
need to achieve subsums 1 and 2, which takes E5 rolls on average.

Thus,

1 1 1 1 1 139
E3y=2+_(24+2(2)+= 64+ By = —.
3 +3<+3()+3(3)>+36+32 05

We could continue in this way, but instead we can treat the problem via a Markov process.

Create the set of 2% vectors V' = {(a1,a2,...,a,) : a; € {0,1},7 = 1,2,...,z}. Each vector

corresponds to a state in a Markov chain: if in state (aj, ag, ..., az), a; = 1 if and only if a sum of ¢
hss been achieved with the faces rolled so far. The goal is to reach the (1,1,...,1) state, which we
treat as the absorbing state. The process starts in state (0,0, ... ,0).

For example, with x = 2, we have the states and transition matrix

(0,0) (1,0) (0,1) (1,1)

0,0 /2/3 1/6 1/6 0
Loyl o 2/3 0 1/3
0,15 o 0 5/6 1/6
(L, \ 0 0 0 1

For example, the probability of moving from state (1, 0) to state (1, 1) is 1/3 since, once a 1 has been
rolled, we need to roll either a 1 or a 2, hence the probability is 2/6 = 1/3.

The following PARI/GP code implements this method and outputs the expected number of rolls until
all sums 1, 2, ..., z have been attained. One useful idea is that of converting the state vectors described
above into integers by treating the vectors as strings of binary digits. This code applies the method of
Appendix D to find the expected value from the transition matrix.
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,x) = sum(i=1,x%x,2"(1i-1)*V[i]); \\ gives the state number corresponding to vector V
= B=vector (x);m=n; j=0;while (m>0,B[j+1]=m%2; j=j+1;m=floor (m/2)); return(B) \\

x=2; \\ we will roll until all sums 1,2,3,...,Xx can be achieved from rolled faces
M=matrix (2°x,27°x); \\
A=vector (x); \\
vectonum (V
(

numtovec (n, x)

{
for (kk=0,2"x-1,

for(d=1,6, \\ figure out what state we get to based on each possible face rolled
BB=numtovec (kk, x); \\ generate the vector for this state
forstep (r=x,1,-1, \\
if( (BB[r]>0) && (r+d<=x), BB[r+d]=1)
)i \\
if (d<=x,BB[d]=1);
jj=vectonum (BB, x) ; \\
M[kk+1, jj+1] = M[kk+1, jJ+1]1+1/6;\\ adding one to make indices legal
) \\
)i
Q=matrix(2°x-1,2"x-1);
for (a=1,2"x-1,for(b=1,2"%x-1,Q[a,bl=M[a,bl));
N=(matid (2"x-1)-Q) " (-1);
print (sum(i=1,2"x-1,N[1,1]));
}

Using this code, I found the following expected values:

x  expected value(exact) ev (approx.) first difference
2 15/2 7.

3 138/18 7.72222 0.222222
4 9139/1152 7.93316 0.210937
5 28669967,/3600000 7.96387 0.030072
6  777101609/97200000 7.99487 0.030992
7 2341848577,/291600000 8.03103 0.036158
8  883143607/109350000 8.07630 0.045271
9  42538515011/5248300000 8.10442 0.028125
10 256722093191/31492800000 8.15177 0.047344
11 1550818181021/188956800000 8.20726 0.055492

The first differences are interestingly erratic. I suspect a simple expression for the expected values
here is unlikely.

Here’s another table. This shows the percentage of the time that all sums 1 through x will have been
achieved by a certain number of rolls.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 0 833 199 320 434 533 61.8 689 748 795 834 865 89.0 91.0
3 0 556 157 279 399 507 60.0 677 740 79.0 83.1 863 889 91.0
4 0 0 972 235 373 494 593 674 738 790 830 863 889 909
5 0 0 833 225 369 492 593 674 738 79.0 83.0 863 889 909
6 0 0 556 222 368 492 593 674 738 79.0 83.0 863 889 909
7 0 0 278 215 368 492 593 674 738 79.0 83.0 863 889 909
8 0 O 0 19.9 366 492 593 674 73.8 790 83.0 863 889 909
9 0 O 0 17.6 36.1 49.1 593 674 73.8 790 83.0 863 889 909
10 0 O 0 139 352 490 593 674 738 79.0 83.0 863 889 909

This is fascinating. The percentages are nearly constant at many roll numbers, and the variety is
almost entirely where the number of rolls is small. Unfortunately, the method used above is too
computationally involved to be applied to large x.

It would be nice to get at least a heuristic for the growth of the expected value as a function of z.
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43.

Comment: experimentally, if you roll a die 15 times, on average you can create sums from 1 to about
48, whereas if you roll 7 times, on average you can get sums from 1 to about 13.3, and 20 rolls will
get you to about 68. 30 rolls will get you to about 105, so it certainly appears that this is approaching
3.5 times the number of rolls.

How long, on average, do we need to roll a die and sum the rolls until the sum is a perfect square
(1,4,9,16,...)?

We can make a very precise estimate of this expected value.

We begin by calculating the expectation resulting from rolling the die up to 10*. That is, if we let £
be the value we want, and p; is the probability that the sum is a square for the first time after ¢ rolls,

then
104 0o

[e.9]
E=) ipi=) ipit+ y ipi=E1+Ey say.
i=1 i=1 i=10%41

We can calculate E; by running through all possible sequences of up to 10000 rolls of the die.
Here is some PARI/GP code that does that:

{
mm=62000;
A=vector (mm) ;
A[11=1;
B=vector (mm) ;
p=0;
plast=0;
totProb=0;
lowerE=0;
for (roll=1,10000,
for (i=1, mm,
if(A[i]1>0, for(d=1, 6,
Bli+d]=B[i+d]+AT[i]))
)i
for (i=1, mm,
if (issquare (i-1) && B[i]>0,p=p+B[i];B[i]=0));A=B;
totProb=totProb+ (p—-plast)*1/6"roll;
lowerE=lowerE+roll«* (p-plast)*1/6"roll;
plast=p;
print (roll," ",lowerEx1l.," ",l-totProbx*l.);
print () ;
B=vector (mm) ;)

The result, accurate to more than 50 digits, is
By =7.079764237551105103895546667746425712389260689139678
At the same time, the calculation tells us that the probability that the sum has not reached a square

after 10000 rolls is less than 6.2 x 1028,

Hence, E» < (6.2728)E’ where E’ is the expected number of rolls needed to reach a square if more
than 10000 rolls are needed. Let’s get an upper bound on E’.

Let’s suppose we are rolling a die and the current sum is m? + 1 where m is large (say m > 10). The
next square the sum could hit is (m + 1)2. The probability of hitting this square is between % and
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44.

}122%’ so the probability of missing this square is less than %, and the expected number of rolls needed

to reach that square is certainly less than (m + 1)? — (m? + 1). If the sum “misses” (m + 1)2, then
the next square the sum could hit is (m + 2)2, requiring fewer than (m + 2)2 — (m + 1)? additional
rolls.

Continuing in this way, we have the upper bound

E' < 10000+ ) "((m+1+j —m?)pg’
j=0

[ee] [ee] o0
=10000 +p [ 7% + > @m+2)j¢ + > @m+ )¢
7=0 7=0 Jj=0
q1+¢q) (@2m+2)q 2m+1
— 10000
+p<<1—q>3 C—q? " 1-q

16807 184877
=1
0000 + 618 m + 1296

< 10000 + 26m + 143

where p = igggg and g = %. After 10000 rolls, considering the worst case, we would have m < 245

and so E/ < 16513.

Thus, F5 < 10722, and so we can conclude that

E =7.079764237551105103895

accurate to 21 digits to the right of the decimal.

How long, on average, do we need to roll a die and sum the rolls until the sum is prime? What if we
roll until the sum is composite?

We make a very precise estimate of this first expected value in the following way.
We start by calculating the expectation resulting from rolling the die up to 10* times.

That is, if E is the value we want, and p; is the probability that the sum is prime for the first time after

i rolls, then
104 o]

[o@)
E:Zipizzipi+ Z ip; = EW + Ey, say .
i—1 =1 i=10%4+1

We can calculate £; by running through all possible sequences of up to 10000 rolls of the die. Here
is some PARI/GP code that does that:

{

mm=62000;

A=vector (mm) ;

A[l]=1;

B=vector (mm) ;

p=0;

plast=0;

totProb=0;

lowerE=0;

for (roll=1,10000,
for (i=1, mm,
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if(A[1i]>0, for(d=1, 6,
Bli+d]=B[i+d]+A[i]))

)i

for (i=1, mm,
if (isprime (i-1) && B[i]>0,p=p+B[i];B[1]=0));A=B;
totProb=totProb+ (p—-plast)*1/6"roll;
lowerE=lowerE+roll«* (p—-plast)*1/6"roll;
plast=p;
print (roll," ",lowerEx1l.," ",l1-totProbxl.);
print ();
B=vector (mm) ;)

}

By setting the numerical precision in GP to display well over 500 decimal places, we can conclude
that, to 500 decimal places,

By = 2.42849791369350423036608190624229927163420183134471
18266468959211216521323257379860460932705658054285
24160047589165194841516565634336164772565943485751
20100473140535884140802682651337652276857652736803
43136681232417851326056596686947409855553312451011
32379770133661680260866153068051346260033855486155
02748670772033743828142893635968820059123417686546
04093838923758726201931868732128985848910810088718
92009240571795609351924253153205397373837440242279
09185701767244213100211303319283551672174728414550

Also output by the code above is the probability that, after 10000 rolls, the sum has never been prime.
This value is approximately 2.05 - 107752, Hence,

E = FE; + (2.06 - 10_552)E10000

where F1gggo is the expected number of rolls needed if more than 10000 are needed. Though I do not
have a proof, it seems true that Egggg is certainly less than 109 (a little experimentation shows that,
starting from a sum in the range 10000 to 60000, the expected number of rolls needed is not more
than 20. Hence, I suspect the true value of Eqggo is likely less than 10020, so I think I am making a
very safe claim here.)

Thus, we may conclude that, to 500 digits of accuracy, ¥ = FE; as listed above.
If I find a way to prove such an upper bound, I’ll be sure to add it.

Now, what if we roll until the sum is composite? This is a much easier question, because we cannot
roll indefinitely: there are no prime numbers between the primes 89 and 97, and since 97 — 89 > 6,
if our sum passes 89, it must fall on one of the composites between these two primes. Since 89 is the
24th prime, we must land on a composite on or before the 26th roll.

With a slight modification to the code above, we may run it for 26 rolls and find that the expected
value of the number of rolls until the sum is composite is exactly

60513498236803196347

28430288029929701376

~ 2.12848699151757507022715820.
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If we let p,, be the probability that the sum will be composite for the first time on the nth roll, then we
have the following table.

n

OO0 IN NI W —

DO = = = = e = e e e
SOV NI WNO—O

NS \OR\S]
Lo =

NSNS J\S]
[©) RV, N

Pn

0.3333333333333333333
0.3611111111111111111
0.1990740740740740740
0.0709876543209876543
0.0245627572016460905
0.0082304526748971193
0.0021612082761774119
0.0004441498507849
0.0000773986434994665
0.0000138093733594133
0.0000031009071914850
0.0000007538649927743
0.0000001611706083475
0.0000000297712612252
0.0000000050341888355
0.0000000008801500407
1.7735336436591380173 E-10
3.7485246399124685943 E-11
7.3437736466195153487 E-12
1.2781174767468527085 E-12
1.8730953391657100290 E-13
2.1219904608947140874 E-14
1.7081782621714818617 E-15
8.9693076528648355726 E-17
2.7083791736101660356 E-18
3.5173755501430727735 E-20

Z?:1 Di

0.33333333333333333333
0.69444444444444444444
0.89351851851851851852
0.96450617283950617284
0.98906893004115226337
0.99729938271604938272
0.99946059099222679470
0.99990474013107757964
0.99998213877457704618
0.99999594814793645955
0.99999904905512794459
0.99999980292012071895
0.99999996409072906651
0.99999999386199029175
0.99999999889617912731
0.99999999977632916806
0.99999999995368253242
0.99999999999116777882
0.99999999999851155247
0.99999999999978966995
0.99999999999997697948
0.99999999999999819939
0.99999999999999990756
0.99999999999999999726
0.99999999999999999996
1

1- 2?21 Di

0.666666666666666666
0.305555555555555555
0.106481481481481481
0.035493827160493827
0.010931069958847736
0.002700617283950617
0.000539409007773205
0.000095259868922420
0.000017861225422953
0.000004051852063540
0.000000950944872055
0.000000197079879281
0.000000035909270933
0.000000006138009708
0.000000001103820872
2.236708319418220031 E-10
4.631746757590820138 E-11
8.832221176783515438 E-12
1.488447530164000092 E-12
2.103300534171473825 E-13
2.302051950057638328 E-14
1.800614891629241323 E-15
9.243662945775692717 E-17
2.743552929109835594 E-18
(3).5 17375551 E-20

We can see that, more than 99 percent of the time, 6 or fewer rolls are needed.

What is the probability that, if we roll two dice, the product of the faces will start with the digit ‘1°?
What if we roll three dice, or, ten dice? What is going on?

When we roll two dice, the possible products that begin with the digit ‘1’ are 1, 10, 12, 15, 16 and 18,

and these occur with probability

1
36°

1

187 9°

1 1 1 1
is» 36» and 13,

product of two dice starting with the digit ‘1" is 3 = 0.3.
With three dice, the probability is % = 0.300925.

Here’s a table with the probabilities for various numbers of dice.

1

0.16

0.3

o2
‘01 W= o=

0.300925

[V
=2

1

379

1296 0.2924382716...

2317

BIT | 0.2079681069...

193

518 0.2978395061...

41977

59068 | 0-2999042638...

28123

28123 | 0.3013867455...

O |0 | QX |||k~ | W N

3043945

0057606 | 0-3020477101...

—_
S

18271529

so166176 | 0-3021776836...
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It seems that, if we roll more than one die, the probability is about 0.3. Why is this?

If a positive real number begins with a ‘1’ digit, then the logarithm of the number will have a fractional
part less than log;, 2 = 0.301029995...

If, instead of considering the product of m rolled dice, we consider the base-10 logarithm of the
product, then this can be viewed as a sum of values chosen with equal likelihood from the set
{0,logg2,10g;03,...,log;ym}. By the Central Limit Theorem, the distribution of these sums will

tend toward a Gaussian distribution as m goes to infinity.

We can make some histograms to see this process.

If we consider all rolls of three dice, and take the base-10 logarithm of the product on each roll, we
get the following histogram.

[Tel
N

20

15

Frequency

10

Al
{
0

T T T
2 4 6

Base-10 logarithm of product of three dice

The greyed portions of the histogram represent those rolls whose products begin with a digit ‘1°.

Here is the same thing, using five dice.

o
(=}
n

Frequency
300 400

200

100

|

Base-10 logarithm of product of five dice

And here it is using ten dice.
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Frequency
500000 1000000 1500000 2000000 2500000 3000000

0
L

Base-10 logarithm of product of ten dice

In each histogram, the greyed bit correspond to products with a base-10 logarithm with fractional part
less than log; 2, i.e., products that start with the digit ‘1°.

As the number of dice tends to infinity, the distribution becomes more and more similar to a normal
distribution. Meanwhile, the variance increases, so the “spread” of the distribution covers more and
more integers - the distribution of the products covers more orders of magnitude. As a result, the
number of grey intervals in the histograms will grow to infinity as well. One can be convinced, then,
that, as the number of dice tends to infinity, the greyed portion of the histogram tends to log;;2 =
0.301029995....

(For a formal argument, it would be sufficient to show that a normal distribution is uniformly dis-
tributed modulo 1 as the variance goes to infinity.)

This is an example of what is often call Benford’s Law, that certain distributions of numbers tend to
have a probability of a leading ‘1’ digit of around log 2.

3.3 Non-Standard Dice

Show that the probability of rolling doubles with a non-fair (“fixed”) die is greater than with a fair
die.

1 1
For a fair, n-sided die, the probability of rolling doubles with it is n X — = —. Suppose we have
n

a “fixed” n-sided die, with probabilities p1, ..., p, of rolling sides 1 through n respectively. The

probability of rolling doubles with this die is
Pl

. 1 . L
We want to show that this is greater than —. A nice trick is to let
n

1
€ :pi—ﬁforz’: 1,...,n.

Then

1 1 2 1
p%+---+pi:(el+ﬁ)2+---+(en+ﬁ)2:e%+---+ei+ﬁ(q+~-+en)+5
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Now, since p1 + - - - + p, = 1, we can conclude that €; + - - - + ¢, = 0. Hence,

11
Pittp=ed+otea+—>—

precisely when not all the ¢;’s are zero, i.e. when the die is “fixed”.
47. Is it possible to have a non-fair six-sided die such that the probability of rolling 2,3,4,5, and 6 is the
same whether we roll it once or twice (and sum)? What about for other numbers of sides?

Let’s start with a 2-sided die.

Suppose the probability of rolling a one is a; and the probability of rolling a 2 is az. Then the
probability of rolling a 2 when rolling twice and summing is a3.

So, to achieve equal probabilities whether rolling once or twice, we require non-negative a1 and ag
with
a1 +as = 1anda% = ay

so that a% + a1 — 1 =0, and hence

-1 5 1 33—V 1
a1 = i = — ~ (0.6180339887498, and as = V5 = — =~ 0.381966011250.
2 ¢ 2 ¢?
where ¢ is the golden ratio.
Let’s look at the six-sided case. Here, we seek ay, . .., ag non-negative with a; + - -- + ag = 1 and
a% = ay
2a1a9 = as

2a1a3 + a% =ay
2a1a4 + 2a9a3 = as

2a1a5 + 2a0a4 + ag = ag.

This implies
a% = a2
2a:1)’ =as
5aj = a4
1445 = as
42&? = ag

and so we seek a (real, bounded between zero and 1) solution to the polynomial
42a$ + 1445 + 5a] + 203 + a3 + a1 — 1.

This polynomial has one positive real root: a; = 0.3833276422504671918282678397.... Thus,
weighting a die with probabilities

a1 = 0.3833276422504671918282678397 . ..
az = 0.1469400813133021601465169741 . ..
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az = 0.1126523898438400996320617058 . ..
aq = 0.1079569374817992533848329781 . ..
as = 0.1158720592665417507230810930 . . .
ae = 0.1332508898440495442852394095 . ..

will give us a die such that the probability of rolling 2, 3,4, 5 and 6 is the same whether we roll once
or roll twice and sum.

In general, for an n-sided die, we require ay, . . ., a, non-negative real numbers with
n
E a; = 1
i=1
and
) .
Ci—iai =a4,t=1,....n
2i
()

where C; is the ¢-th Catalan number, C; = —*—. Thus we need to guarantee a positive real root less

1+ 1
the one for the polynomial

n
-1 + Z Ci_lxi
i=1

Since this polynomial evaluates to —1 at x = 0, and is positive for x = 1, there must be at least one
real solution between 0 and 1, and so there exists one of these special dice for every number of sides.

For an n-sided die, we have the following approximate a; values:

3

ax
0.6180339887498
0.5
0.4418115119484
0.4068294316935
0.3833276422504
0.3663733452433
0.3535209284167
0.3434158345289
0.3352452267388
0.2969330618649
0.2714018346938
100  0.2617716572724
200  0.2564370408369
500  0.2528692107822
1000 0.2515454964644

Some observations (proofs to be added later):

OR[N || B~|WIN

—_
o

[\
(@)

o)
(]

(a) It appears that a; approaches i as n tends to infinity.

(b) For any given number of sides n, it appears that the values of a; decreases as ¢ increases until
reaching a minimum with ¢ = [, and increases thereafter.
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48.

49.

50.

Find a pair of 6-sided dice, labelled with positive integers differently from the standard dice, so that
the sum probabilities are the same as for a pair of standard dice.

Number one die with sides 1,2,2,3,3,4 and one with 1,3,4,5,6,8. Rolling these two dice gives the same
sum probabilities as two normal six-sided dice.

A natural question is: how can we find such dice? One way is to consider the polynomial
(x4 2% + 23 + 2% + 25 + %)%
This factors as
21+ 2)*(1+z+2%)%(1 -z + 222
We can group this factorization as
(z(1+2)1+z+2%) (21 +2) (1 + 2 +27)(1 — 2 + 2°)?)
= (2 +22% 4 223 + 2 (2 + 2° + 2 4 25 + 2 + 25).
This yields the “weird” dice (1,2,2,3,3,4) and (1,3,4,5,6,8). These dice are known as Sicherman dice,
named for George Sicherman who communicated with Martin Gardner about them in the 1970s.

See Appendix C for more about this method.

See [1] for more on renumbering dice.

Is it possible to have two non-fair n-sided dice, with sides numbered 1 through n, with the property
that their sum probabilities are the same as for two fair n-sided dice?

Another way of asking the question is: suppose you are given two n-sided dice that exhibit the prop-
erty that when rolled, the resulting sum, as a random variable, has the same probability distribution as
for two fair n-sided dice; can you then conclude that the two given dice are fair? This question was
asked by Lewis Robertson, Rae Michael Shortt and Stephen Landry in [2]. Their answer is surprising:
you can sometimes, depending on the value of n. Specifically, if n is 1,2,3,4,5,6,7,8,9,11 or 13, then
two n-sided dice whose sum “acts fair” are, in fact, fair. If n is any other value, then there exist pairs
of n-sided dice which are not fair, yet have “fair” sums.

The smallest example, with n = 10, gives dice with the approximate probabilities (see [Rob 2] for the
exact values)

(0.07236,0.14472,0.1,0.055279, 0.127639, 0.127639, 0.055279, 0.1, 0.14472, 0.07236)

and
(0.13847,0,0.2241,0,0.13847,0.13847,0,0.2241, 0, 0.13847).

It’s clear that these dice are not fair, yet the sum probabilities for them are the same as for two fair
10-sided dice.

Is it possible to have two non-fair 6-sided dice, with sides numbered 1 through 6, with a uniform sum
probability? What about n-sided dice?

No. Let p1, p2, p3, p4, ps and pg be the probabilities for one 6-sided die, and q1, ¢2, g3, g4, ¢5 and gg be
the probabilities for another. Suppose that these dice together yield sums with uniform probabilities.
That is, suppose P(sum = k) = - for k = 2, ..., 12. Then

1
and pggs = —-

p1g1 = 11 11
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S1.

Also, )
17 = Plsum =17) = pids + pecn
)
1 n 1 < 1
Pitps T P11y, T 11
1.e.,
L !
Pe D1
Now, if we let x = g—é, then we have
1
z+—-<1
T

which is impossible, since for positive real x, x + % > 2. Thus, no such dice are possible.
An identical proof shows that this is an impossibility regardless of the number of sides of the dice.

Suppose that we renumber three fair 6-sided dice (A, B,C) as follows: A = {2,2,4,4,9,9},B =
{1,1,6,6,8,8}, and C = {3,3,5,5,7,7}.

(a) Find the probability that die A beats die B; die B beats die C; die C beats die A.
(b) Discuss.

The probability that A beats B can be expressed as

OIONGIOROLE

The thinking behind this goes like this: the probability of rolling a 2 with A is 2/6, and if a 2 is rolled,
it will beat B with probability 2/6. The probability of rolling a 4 with A is 2/6, and it will beat B with
probability 2/6. The probability of rolling a 9 with A is 2/6, if it will beat B with probability 1.

Similarly, the probability that B beats C'is

() B)o-

and the probability that C beats A is

2) (2), (2) (), (2) (45

6/ \6 6) \6 6)\6/ 9
Thus, each die beats another with probability greater than 50%. This is certainly a counterintuitive
notion; this shows that “beats”, as in “die 1 beats die 2” is not transitive.

Lots of questions arise. What other sets of “non-transitive” dice are possible? What is the fewest
number of sides necessary? For a given number of sides, what is the minimum possible maximum
face value (e.g., in the set given above, the maximum face value is 9)? For a given number of sides,
and a bound on the face values, how many sets of transitive dice are there? What about sets with more
than three dice?
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52.

53.

54.

Find every six-sided die with sides numbered from the set {1,2,3,4,5,6} such that rolling the die twice
and summing the values yields all values between 2 and 12 (inclusive). For instance, the die numbered
1,2,4,5,6,6 is one such die. Consider the sum probabilities of these dice. Do any of them give sum
probabilities that are “more uniform” than the sum probabilities for a standard die? What if we
renumber two dice differently - can we get a uniform (or more uniform than standard) sum probability?

The numbers 1, 2, 5 and 6 must always be among the numbers on the die, else sums of 2, 3, 11 and
12 would not be possible. In order to get a sum of 5, either 3 or 4 must be on the die also. The last
place on the die can be any value in {1,2,3,4,5,6}. Hence there are 11 dice with the required property.
Listed with their corresponding error, they are:

1,2,4,5,6,6 0.0232884399551066

1,2,4,5,5,6 0.0325476992143659
1,2,4,4,5,6 0.0294612794612795
1,2,3,5,6,6 0.0232884399551066
1,2,3,5,5,6  0.026374859708193

1,2,3,4,5,6 0.0217452300785634
1,2,3,3,5,6  0.0294612794612795
1,2,2,4,5,6  0.026374859708193

1,2,2,3,5,6  0.0325476992143659
1,1,2,4,5,6 0.0232884399551066

94y Tyl

1,1,2,3,5,6  0.0232884399551066

The error here is the sum of the square of the difference between 1/11 and the actual probability of
rolling each of the sums 2 through 12 (the probability we would have for each sum if we had a uniform
distribution). That is, if p; is the probability of rolling a sum of ¢ with this die, then the error is

i)

i=2
Note that the standard die gives the smallest error (i.e., the closest to uniform sum).

If we renumber two dice differently, many more cases are possible. One pair of dice are 1,3,4,5,6,6
and 1,2,2,5,6,6. These two dice give all sum values between 2 and 12, with an error (as above) of
0.018658810325477, more uniform than the standard dice. The best dice for near-uniformity are
1,2,3,4,5,6 and 1,1,1,6,6,6 which yield all the sums from 2 to 12 with near equal probability: the
probability of rolling 7 is 1/6 and all other sums are 1/12. The error is 5/792, or about 0.00631.

If we roll a standard die twice and sum, the probability that the sum is prime is % = % If we

renumber the faces of the die, with all faces being different, what is the largest probability of a prime
sum that can be achieved?

To get prime sums other than 2, we need to have both even and odd faces. If three faces are even and
three are odd, then there will be 18 odd sums out of the 36 possible combinations. If two faces are
odd and four are even, there will be 16 odd sums, and if one face is odd and five are even, then there
will be 10 odd sums. So, the maximum number of prime sums out of 36 is 19 (if all odd sums are
prime, and the sum 2 is achievable). This is achieved with the die {1, 2, 3,4,9, 10} which yields the
sum set {2, 3,4,5,6,7,8,10,11,12,13,14, 18,19, 20} in which all odd numbers are prime.

Let’s make pairs of dice that only sum to prime values. If we minimize the sum of all the values on the
faces, what dice do we get for 2-sided dice, 3-sided dice, etc.?

We’ll assume that all faces of the dice are different, to keep this from being trivial.
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We can use linear programming to find these dice. Suppose we want to make dice with s sides. Let n
be an upper bound on the face values. We can define the following linear program to find the dice:

n n
minimize: g 1-a; + g 1-b;
i=1 i=1

subject to
a; +bj < 1forall 4, j such that i + j is composite (i.e., not prime) (3.16)
n
Z a; = s (3.17)
i=1
n
> bhi=s (3.18)
i=1

with a;,b; € {0,1} forall 4, j € {1,...,n}. There is the question of how to set n. We can simply
start small and increase it until we get some dice, and then keep increasing n until, say, n is greater
than the total face value sum of dice already found.

On the other hand, we could also ask for the dice with the minimum maximal face.

Here are the resulting dice:

sides minimal total face sum (sum) minimal maximal face

2 2,4},{1,3}(10) same

3 2,4,10},{1,3,9}(29) same

4 2,6,12,18},{1,5,11,35}(90) {6,10,16,20},{1,7,13,31}

5 2,8,14,28,44},{3,9,15,39,45}(207) same

6 2,8,14,38,44,98},{3,9,15,29,59,65}(384) {4,12,16,46,72,82},{1,7,25,55,67,85}
7 6,12,16,22,72,82,106},{1,7,25,31,67,91,151}(689) same

With more sides, it takes progressively longer to solve these LPs.

We could also try a greedy method of creating the dice. Start with 1 on die A, and 2 on die B. Then
add the next smallest integer to each die in turn that maintains the prime sum requirement.

This results in the two sets
A=1{1,3,9,27,57,267,1227,1479, 3459, ... }

and
B ={2,4,10,70,100, 1060, 27790, 146380, 2508040, . . . }

and, in particular, the six-sided dice with sides {1, 3,9,27,57,267} and {2, 4, 10, 70, 100, 1060}. So
you can see that this is pretty far from getting the minimal faces, but it is easy to code.

We can extend the question to sets of three dice.

For two-sided dice, assuming all faces are odd, the sets {{1, 3}, {3,9}, {1, 7}} and {{3,5},{1,7},{1,7}}
yield only prime sums, the latter one being the set with the minimal maximum face. If we want to
require that the dice faces are all distinct, the set {{9, 11}, {5,17},{3,15}} is the one with minimal
maximum face. If we choose to have two dice with all even faces, and one with all odd faces, then
we get the dice {{2,4}, {2,8}, {1, 7} } with minimal maximum face. If we further require all distinct
faces, then {{2,6}, {4, 10}, {1, 7} is the set with minimal maximum face.
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55.

56.

For three-sided dice, the set {{1,7,37},{1,7,37},{9, 15,29} } yields only prime sums, and is the set
with minimal maximum face. If we require that the dice faces are all distinct, then the set

{{1,31,37},{3,9,39}, {13,27,33}}
works and has minimal maximum face.
Show that you cannot have a pair of dice with more than two sides that only gives sums that are

Fibonacci numbers.

Here we consider each die to have distinct integer faces (i.e., no face is repeated), but we do not need
to assume that there is no face common to both dice.

Let’s start with the two-sided case, and we’ll see this leads easily to the greater-than-two sides case.

Suppose we have two-sided dice with sides {r, s},{t, u} with sums that are all Fibonacci numbers. We
can subtract r from the first die’s faces, and add r to the second to get the dice {0, s—7r}, {t+r,u+r}
with the same sumset. Since the first die has a zero, and all sums are Fibonacci, we can relabel the
dice as {0, x}, {F,, Fp}, where F), is the n-th Fibonacci number (e.g., F; = 1, F5, = 1, F5 = 2, etc.)
We may assume F, < Fj.

Let’s write F, = x + F, and F; = = + Fy,.

Then Fy, + F. = F, + Fy.

Suppose b < c. Then Fy, + F, < F._1 + F, = F.11 < F; < Fy+ F,, a contradiction.
Suppose b > c. Then Fy, + F. > Fy, + Fy,—1 = Fy1 < Fy < F;+ F,, a contradiction.
Hence, b = ¢, and so we have, simply, F, = F, + x and F; = F} + .

Then z > F;_1, since otherwise we’d have Iy, + = < Fp + Fy_1 = Fp1 < Fy.

On the other hand, F;, = F,, 4+ x implies * < F}. Thus, x = Fj_1. (Note we are using the fact that
F, > 0 here).

Thus, if we have two-sided dice with sums that are Fibonacci, they must be “equivalent” to the dice
{0, Fy, — 1}, {Fy—2, F}} for some integer b > 1. By “equivalent”, I mean any dice derived from these
by adding an integer « to all faces of one die and subtracting « from all the faces of the other.

So we can have dice like {0, 3}, {2,5}, or {0, 8}, {5, 13}.

Now, if we have more than two sides, then all non-zero faces of the die with the zero on it would
have to be identical (in these cases, our x above standing for any non-zero face), something we are
not allowing here. Hence, dice with three or more sides whose sums are all Fibonacci are impossible.

3.4 Games with Dice

Two players each roll two standard dice, first player A, then player B. If player A rolls a sum of 6, they
win. If player B rolls a sum of 7, they win. They take turns, back and forth, until someone wins. What
is the probability that player A wins?

The idea here might be that, even though rolling 7 is the most likely roll, player A gets to go first, and
perhaps this first-player advantage offsets player B’s more advantageous target. Let’s see.

Let’s let p be the probability of rolling a sum of 6 with two dice (so p = %). Let r be the probability
of rolling a sum of 7 with two dice (so r = %). Player A can win in a number of ways: player A rolls
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57.

38.

6 immediately; player A fails to roll a 6 and player B fails to roll a 7, then player A rolls a 6; player A
fails to roll a 6 two times and player B fails to roll a 7 two times, then player A rolls a 6, etc.

Each of these are independent events, and each one has a probability equal to
(1=p)* (1 —r)p

where £ = 0,1,2,3,.... Hence we can add up the probabilities: the probability that player A wins is

- o1 — Ve = p _ p
kzo(l p) (L=r)p 1-(1-p)(1—=7r) p+r—pr

o=

30
For p = % and r = , this equals 6l = 0.4918032... so the game just slightly favors player B.

In the previous problem, we find out that the game is not fair. Are there sum targets for player A and
player B that would make the game fair? What about using a different number of dice, or allowing
targets to include more than one sum?

Let p be the probability of player A rolling their target sum in one roll, and r be the probability of
player B rolling their target sum in one roll. In order for the game to be fair, we require

I P
2 p+r—opr
b

SOT‘:W.

Let’s say p = s% and 7 = 73 where s is the number of sides of the dice. Then

k m

22—k s
and so ks?> = ms? — km. Hence, s? divides km. But this is impossible, since km is not zero, and
km < s(s—1) < s2
Thus, there is no choice of target sums that would make this game fair.

So that doesn’t work.

9

%a
sum of 4 or 5 with two dice is 3%, while the probability of throwing a sum of 8,9 or 10 with two dice
is %. Thus, the game is fair if the first player’s target is a sum of 4 or 5, and the second player’s target

is a sum of 8,9 or 10.

But, we can note that if p = then 1’%}0 = %. Then we can note that the probability of throwing a

If the players throw three dice, and player A’s target is a sum of 4 or 8 while player B’s target is a sum
24 27 _ 1

of 11, then the game is fair. In this situation, we’d have p = 516 = % andr = 5z = g = l%p.

Two players each roll two dice. Player A is trying to roll a sum of 6, player B is trying to roll a
sum of 7. Player A starts, and rolls once. Then Player B rolls twice, then Player A rolls twice, and
they repeat, both players rolling twice in succession until someone rolls their target sum. What is the
probability of winning for each player?

This is a very old problem; one finds it as Problem I in perhaps the first book on probability, the 1714
book Libellus De Ratiociniis In Ludo Aleae by Christian Huygens

Let p be the probability of rolling a sum of 6 with two dice, so p = %. Let r be the probability of
rolling a sum of 7 with two dice, so r = %. Further,letp =1 —pand7 = (1 —7r) = %. Lastly, let
335

p=1-(1-p)?2= 1505 the probability of rolling a sum of 6 in either of two throws.

Player A can win in a number of ways:
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* Throw a 6 immediately

* Fail to throw a 6, then have player B fail to throw a 7 in two throws, then throw a 6 in one of the
next two throws

* Fail to throw a 6 in three throws, have player B fail to throw a 7 in four throws, then throw a 6
in two throws (not in this order of course)

* Fail to throw a 6 in five throws, have player B fail to throw a 7 in six throws, then throw a 6 in
two throws
etc.
The probability of the first possibility is simply p.
We can express the probability of each of the other possibilities as

5201525

p Jp
where 7 = 1,2,3,.... Summing, we find the probability of A winning is
o ~
S2j—1-2j~ _ E 1 1) = 10355
p+;p " p+p(1—p2r2 > 922631°
. ... 12276 i
As a result, the probability of player B winning is 59631 and so the ratio of player A’s chance of

winning to player B’s chance of winning is
10355 : 12276.

This is the way Christian Huygens reported the answer.

Two players each roll a die. Player 1 rolls a fair m-sided die, while player 2 rolls a fair n sided die,
with m > n. The winner is the one with the higher roll. What is the probability that Player I wins?
What is the probability that Player 2 wins? What is the probability of a tie? If the players continue
rolling in the case of a tie until they do not tie, which player has the higher probability of winning? If
the tie means a win for Player 1 (or player 2), what is their probability of winning?

When the two players roll there dice, there are mn possible outcomes. These can be thought of as
lattice points, i.e., points (z,y) in the zy-plane where = and y are positive integers, and 1 < x < m
and 1 <y < n.

Of these mn lattice points, Player 1 is a winner whenever > y. The number of lattice points with
x > yisequal to

(m—1)+(m—2)—|—(m—3)—|—-+(m—n):nm—%n(n-i-l).

Hence, the probability of Player 1 winning is

1_n+1.
2m

Of the nm possibly outcomes, n are ties. So the probability of a tie is
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Hence, the probability of Player 2 winning is

n—1

2m

Now, suppose the players continue rolling until there is no tie, and then the winner is declared based
on the final roll. What are the winning probabilities then? Let p be the probability of Player 1 rolling
a larger roll on a single roll, and ¢ be the probability of a tie. Then, for Player 1 to win, there must be
a sequence of ties, followed by a single winning roll by Player 1. Hence, the probability of Player 1

winning is
RO
i=0 i=0 q

Using the values for p and ¢ calculated above, we find that the probability of Player 1 winning if the
players reroll until they are not tied is

1
- _ L. n-1
1- L 2(m — 1)
and so the probability of Player 2 winning is
n—1
2(m—1)

If, instead of rerolling, ties mean a win for Player 1, then Player 1’s probability of winning becomes

n+1 1 n—1
1-— +—=1- .
2m m 2m
while Player 2’s is
n—1
2m

If, instead of rerolling, ties mean win for Player 2, then Player 1’s probability of winning is

n+1

2m

while Player 2’s is

n—1 4 1 n+1
om  m  2m
Since r%ll < % as long as n < m — 1, Player 2 is at a disadvantage even if ties go them, except when
n = m — 1, in which case the players are evenly matched (each with a % probability of winning). If
Player 1’s die has at least two more faces than Player 2’s die, Player 1 has the advantage, regardless

of how ties are treated.

Two players each start with 12 tokens. They roll three dice until the sum is either 14 or 11. If the sum
is 14, player A gives a token to player B; if the sum is 11, player B gives a token to player A. They
repeat this process until one player, the winner, has all the tokens. What is the probability that player
A wins?

This is a very old problem; one finds it as Problem V in an early book on probability, the 1714 book
Libellus De Ratiociniis In Ludo Aleae by Christian Huygens.
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Let’s generalize slightly and suppose that each player starts with a tokens and the probability of player
A gaining a token on one turn is p.

Let x be the number of A’s tokens minus a. So the game begins with x = 0, and player A needs to
reach x = a before reaching * = —a in order to win.

We can view the game as a biased, absorbing random walk: x begins at zero, and at each step, x
increases by one (with probability p) or decreases by 1 (with probability 1 — p) until x = a or
T = —a.

Let R, be A’s probability of winning when the number of A’s tokens minus a is z.

Then we know
R,=1land R_, =0

and
Ry =pRos1+ (1 —p)Ry — 1 (3.19)

for —a < n < a. Equation (3.19) is an example of a linear recurrence relation, and we can solve for
R,, using the method in Appendix E as follows.

Rewriting, equation (3.19) becomes
pRn+1 =R, — (1 - p)Rn—l
and this has characteristic equation
2 _
pr®—x+1—p=0.
Let’s assume p > % Then the two roots of this equation are o; = 1 and ap = 1]'%”.
Then, there exist constants ¢; and ¢y such that

R, = c1a] + c2a3.

with0 = R_, and 1 = R,.

asg —af
Solving, we find ¢; = ——2 _andey = —L+ .
2a _ H2a 2a _ ~2a
« « « «
2 1 2 1
We are interested in Ry and we find
R + S
0 = Cl C2 = .
of + af

For our particular problem, a = 12 and p = 1% (since the probabilities of throwing a sum of 11 and

‘14 with three dice are é and %, respectively), so az = % and so the probability of player A winning

1S
1 912 282429536481

12~ ®i2 2
1+ (8) 52 +9 282673677106

Ry =

which is approximately 0.999136316.... Thus, player B has a probability of winning of

244140625 1 n 1 n
282673677106 1158 7951489

-~ 0.00086368362098 . . .

In keeping with the style that Huygens used, we can say that the ratio of the two players’ probabilities
of winning is 244140625 to 282429536481.
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61.

62.

Two players each start a game with a score of zero, and they alternate rolling dice once to add to their
scores. Player A rolls three six-sided dice on each turn, while player B always gets 11 points on their
turn. If the starting player is chosen by the toss of a coin, what is the probability that player A will be
the first to 100 points?

Since player B always gets 11 points and player A gets 10.5 points on average, we might expect player
B to have the advantage.

Since player B always gets 11 points, they will reach 100 points on exactly their tenth roll.

If player A goes first, player A needs to reach 100 points on or before their 10th roll in order to win.

Letting
1
p=g (x4 2° +2° + 2" + 2° + 2°)

we can express the probability that their score is 100 or greater as

10:3:6 - 1967530550176293236225

p— 3y10y _
! i:%o((p) )i 2729307650873251332096

~ 0.72088998

where the subscript 7 indicates the coefficient of z* in the polynomial (see Appendix C for more about
this method).

If player B goes first, then player A needs to reach 100 points on or before their 9th roll in order to
win. Calculating as above, this probability is

9-3-6
510825255320984633
P, = 3)9),; = ~ 0.28748228.
2 Z,:Zwo((p ) 1776893001870606336

We see that P, + P2 is very close to one, so it’s a close game. But,

1P i 1P _ 2752158142349325632513
2" 1" 27?7 5458615301746502664192

so player A has a very slim advantage.

~ 0.50418613

What if the game is played to limits other than 100? Considering all possible game limits, it seems
player A has the advantage when the game is played to

12,13,14,15,23,24, 25,26, 34, 35, 36,45, 46,47, 56,57, 58,67, 68, 78,79, 89 and 100
and for no larger limits. Player A has the largest advantage with a limit of 12, winning about 68.25%
of the time, and the smallest advantage with a limit of 58, winning about 50.06% of the time.
Craps What is the probability of winning a round of the game Craps?
The probability of winning a round of craps can be expressed as

P(rolling 7 or 11) + Z P(rolling b) P(rolling b again before rolling 7).
be{4,5,6,8,9,10}

We now evaluate each probability. The probability of rolling 7 is % = %, and the probability of
rolling 11 is % = 1—18. Hence,

2 2
P(rolling 7or 11) = % w9

The following table gives the probability of rolling b, for b € {4, 5,6, 8,9, 10}. (This is the probability
of b becoming the “point”.)
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63.

3736 =1/12

4/36 =1/9

5/36

5/36

4/36 =1/9
0 | 3/36 =1/12

=\ 00 O\ L R

Finally, we need to determine the probability of rolling b before rolling 7. Let p be the probability of
rolling b on any single roll. Rolling b before rolling 7 involves rolling some number of rolls, perhaps
zero, which are not b or 7, followed by a roll of b. The probability of rolling k rolls which are not b or

7, followed by a roll of b is
k k
] 1 (5
p 6 p= 6 p) b

Since k£ may be any non-negative integer value, we have

> k
)
P(rolling b before rolling 7) = g (6 — p) p= 1L
k=0 gtPp

See Appendix B for some formulas for simplifying series such as the one above. Another way of
looking at this is that the probability of rolling b before rolling a 7 is the conditional probability of
rolling b, given that either b or 7 was rolled.

We can calculate the following table:

b P(rollingb)  P(rolling b again before rolling 7)  P(rolling b) P(rolling b again before rolling 7)
4 1/12 1/3 1/36

5 1/9 2/5 2/45

6 5/36 5/11 25/396

8 5/36 5/11 25/396

9 1/9 2/5 2/45

10 1/12 1/3 1/36

Thus, the probability of winning a round of craps is

2 1 2 25 25 2 1 244

S S f T 2 2T 0.4920.
9+36+45+396+396+45+36 495 04929
244 1 7
Since 195 =2 " 990" the odds are just slightly against the player.

Non-Standard Craps We can generalize the games of craps to allow dice with other than six
sides. Suppose we use two (fair) n-sided dice. Then we can define a game analogous to craps in the
following way. The player rolls two n-sided dice. If the sum of these dice is n + 1 or 2n — 1, the
player wins. If the sum of these dice is 2,3 or 2n the player loses. Otherwise the sum becomes the
player’s point, and they win if they roll that sum again before rolling n + 1. We may again ask: what
is the player’s probability of winning ?

For two n-sided dice, the probability of rolling a sum of n + 1 is

n 1
P )=—=-
(n+1) 2=
and the probability of rolling a sum of 2n — 1 is
P@2n—-1)=—.
(n-1)=
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In general, the probability of a sum of £ is

n—|k—n-—1]|
n? '

P(k) =

Hence, the probability of winning a round of Craps with n-sided dice is

12 P(k)? 102 (n—|k—n—1)?2
P=nt T D B e D o n @t X w1l
4<k<2n—2 4<k<2n—2

k#n+1 k#n+1
We have the following table:

n P

3 5/9 = 0.55555...

4 15/28 = 0.535714...

5 461/900 =0.512222...

6 244/495 = (0.492929...

7 100447/210210 = 0.477841...

8 37319/80080 = 0.4660214...

9 2288779/5012280 = 0.456634...

10 23758489/52907400 = 0.449057...
20 0.415459...
30 0.404973...
50 0.397067...
100 0.391497...

1000 0.386796...
10000 0.386344...
100000  0.386299...
1000000 0.38629486...

It certainly appears that p,, approaches a limit as n approaches infinity.

64. Yahtzee There are many probability questions we may ask with regard to the game of Yahtzee. For
starters, what is the probability of rolling, in a single roll,

a) Yahtzee

b) Four of a kind (but not Yahtzee)

c) A full house

d) Three of a kind (but not Yahtzee, four of a kind or full house)
e) A long straight

f) A small straight

These questions aren’t too tricky, so I’ll just give the probabilities here:

6
(a) Yahtzee: — ~ 0.07716%

65 1296
5
-6-5 25
(b) Four of a kind (but not Yahtzee): (4) & = 1296 ~ 1.929%
(3)-6-5 25
A full h N 7 7 %Y 3.858
(c) A full house & o3 %

(d) Three of a kind (but not Yahtzee, four of a kind or full house) :

5

(3)-6-5-4 25

S = - x 15432
6° 1z~ 15-432%
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2-5! )
(e) A long straight: & " 1m 3.086%

(f) A small straight (but not a long straight):

5! 5!
2.442(2-445! 1
2 (5i-4+5) — 87(1) ~ 12.346%

65. More Yahtzee What is the probability of getting Yahtzee, assuming that we are trying just to get
Yahtzee, we make reasonable choices about which dice to re-roll, and we have three rolls? That is,
if we’re in the situation where all we have left to get in a game of Yahtzee is Yahtzee, so all other

outcomes are irrelevant.

This is quite a bit trickier than the previous questions on Yahtzee. The difficulty here lies in the large
number of ways that one can reach Yahtzee: roll it on the first roll; roll four of a kind on the first roll
and then roll the correct face on the remaining die, etc. One way to calculate the probability is to treat
the game as a Markov chain (see Appendix D for general information on Markov chains).

We consider ourselves in one of five states after each of the three rolls. We will say that we are in
state b if we have b common dice among the five. For example, if a roll yields 12456, we’ll be in state
1; if aroll yields 11125, we’ll be in state 3. Now, the goal in Yahtzee is to try to get to state 5 in three
rolls (or fewer). Each roll gives us a chance to change from our initial state to a better, or equal, state.
We can determine the probabilities of changing from state ¢ to state j. Denote this probability by P; ;.
Let the O state refer to the initial state before rolling. Then we have the following probability matrix:

120 900 250 25 1
1296 1296 1296 1296 1296
120 900 250 25 1
1296 1296 1296 1296 1296
0 120 80 15
216 216 216
0 25 10
36 36 36

(3.20)

SO O O O O
no
\HH‘H
(=)

The one representing Ps 5 indicates that if we reach yahtzee, state 5, before the third roll, we simply
stay in that state. Now, the probability of being in state 5 after 3 rolls is given by

Z Poiy Piy iy Pins = (M?)15
where the sum is over all triples (i1, 92, 43) with 0 < ¢; < 5. Calculating M 3 gives us the probability

2783176 347897

= ~ 0.04 .
610 7558272 0.04603

347897 1

7558272  21.7256026...
tempts.

, a player will get Yahtzee about once out of every twenty two at-

Since

66. Drop Dead

(a) What is the expected value of a player’s score?

(b) What is the probability of getting a score of 07 12 102 20?2 etc.
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(a) The player begins with five dice, and throws them repeatedly, until no dice are left. The key factor
in calculating the expected score is the fact that the number of dice being thrown changes. When
throwing n dice, a certain number may “die” (i.e. come up 2 or 5), and leave j non-dead dice. The

probability of this occurring is
n \ 2" 747
P (1 )2
n—3j 6

The following table gives P, ; for n and j between 0 and 5.

n\j 0 1 2 3 4 5
1 13 213 0 0 0 0
2 19 49 4/9 0 0 0
3127 627 1227 827 0 0
4 1/81  8/81  24/81 32/81 16/81 0
5 1/243 10/243  40/243 80/243 80/243  32/243

When throwing n dice, the expected sum is 3.5n, if none of the dice come up 2 or 5. Let E(n)
represent the expected score starting with n dice (so we’re ultimately concerned with F(5)). Consider
E(1). Rolling a single die, the expected score is

E(1) =3.5P 1 + E(1)Py ;.

That is, in one roll, we pick up 3.5 points, on average, if we don’t “drop dead” (so we get 3.5 1
expected points), and then we’re in the same position as when we started (so we pick up E(1)P; 1
expected points). We can solve this equation to get

=+ (3))-

Now, suppose we start with 2 dice. The expected score is
E(Q) = (2 - 3.5+ E(Q)) P2’2 + E(l)PQ}l.

That is, on a single roll, we pick up 2 - 3.5 points on average if none of the dice “die”, in which case
we’re back where we started from (and then expect to pick up E(2) points), or exactly one of the dice
“die”, and so we expect to pick up F(1) points with the remaining die. This equation yields

1 56
= P. E(L)Py1) = —.
=Py (TP + E(1)Py,1)

E(2) -

Continuing in this way, we have the general equation
n
E(n)=35-n-Pyn+ Y E(j)Pn;
j=1
which we can rewrite as

1 n—1

With this formula, we can calculate F(n) for whatever value of n we want. Here is a table of E(n):

90



A Collection of Dice Problems

Matthew M. Conroy

1 7

2 | B =112

3| 12 ~13.70526

3752

4 %4; 15.19028

5| A2 ~ 1606466

¢ 929630259835592 %ZZZ o8

10 577645434482505 ~ 1719556

20 ~ 17.26399

30 ~ 17.26412371400800701809841213

100 | =~ 17.26412423601867057324993502

250 | =~ 17.26412422187783220247082379
18 x x x I I n

00000000000000000000000

&
16 <o _
14 - o —
12 —

&
10 - -
8 - —
(o2
6 | | | | |
0 5 10 15 20 25

30

So we see that a game of Drop Dead, using 5 dice, will have, on average, a score of about 16.06.

Further questions: Notice that if we play the game with more than 5 dice, the expected score does
not increase very much. In fact, it appears as if there is an upper bound on the expected score; that is,
it seems that there is some B so that E(n) < B for all n. What is the smallest possible value for B?
Also, we expect F/(n) to always increase as n increases. Can we prove this is s0?

(b) Calculating the exact probabilities of scores seems to be a bit of a pain. The easiest score to work
out is zero. To get zero, the player must roll at least one 2 or 5 on every roll. If we define a Markov
process, with states 0, F, 5, 4, 3, 2, 1 (in that order), where 0 means a score of zero has been achieved,
F means a score greater than 0 has been achieved, and 5 through 1 are the current number of dice
being rolled, we have the following transition matrix:

Py =

10 0 0 0 0 O
o 1 0 O 0 0 O
EEEEEE.
3%

¥ ¥ 0, 87 g
A S O
7 g 00 0 0 g
2.0 0 0 0 0
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Since the games takes at most five rolls, the fifth power of this matrix tells us what we want to know:

1 0 00000

9759853 380411116 00000

00000

po_ TEEST B 0 0 0 0 o

A R
243

217 2323300000

3 2 00000

978853 978853

Thus we see that the probability of achieving a score of zero is =
4782969 34

0.2046538457598....

The probability of achieving a score of 1 is calculable in a similar way. Our transition matrix is

, which is about

1 00 0 0 0 0
010 0 0 0 0
EEEEEE.

p=|Y & 0 0 & » g
oéooogg
0 g 00 0 0 3
% @ 0 0 0 0 0

A note on this lower-left most entry: once the player has only one die left, they have a 1/6 chance of
rolling a one; but then, the die must die, which occurs with probability 1/3. Hence the 1/18 probability
of getting a score of 1 after the state of one die is attained.

Raising this matrix to the fifth power yields

1 0 00000
3050285 447%684 00000
000 O00O0
I L
Py = 59049 19683

a1 b7 000 O0O0

1
is 18 000 O00O0

and thus the probability of a score of 1 in this game is 305285/14348907 = 0.0212758365497804118....
Scores higher than 1 are more difficult, since it will not be necessary to reach a single die. On the

other hand, to achieve a score of n, there can be at most n + 4 rolls, so the problem is finite.

67. Threes In the game of Threes, the player starts by rolling five standard dice. In the game, the threes
count as zero, while the other faces count normally. The goal is to get as low a sum as possible. On
each roll, at least one die must be kept, and any dice that are kept are added to the player’s sum. The
game lasts at most five rolls, and the score can be anywhere from 0 to 30.

For example a game might go like this. On the first roll the player rolls
2-3-3-4-6

The player decides to keep the 3s, and so has a score of zero. The other three dice are rolled, and the
result is
1-5-5
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Here the player keeps the 1, so their score is 1, and re-rolls the other two dice. The result is
1-2

Here, the player decides to keep both dice, and their final score is 4.

If a player plays optimally (i.e., using a strategy which minimizes the expected value of their score),
what is the expected value of their score?

This is certainly best analysed in reverse.
Suppose we are rolling one die. Then the expected value of the result is

1+2+0+4+5+6
6

=3.

Suppose we roll two dice. The rules require that we keep at least one, so clearly we must keep the
lower of the two. The question is whether to keep the other one. If we don’t keep it, our expected
value from it will be 3 when we reroll. Hence, we should keep itifitisa3,a 1, ora?2.

Following this method, the expected value with two dice is expressible as

LS~y 158 79
=36 ; ; (min{i, 7} + min{max{i, j},3}) = 2 =18 = — 4.388...

Suppose we roll three dice. We must keep the lowest die, so we need to decide whether to keep either
of the other two dice. Obviously, if we keep only one of them, we would keep the lower one. Call the
three dice

dy < dy < ds.

Then if we keep both dy and d3, our sum is do + d3. If we re-roll only ds, then our expected sum is
ds + 3. If we re-roll both ds and ds, then our expected sum is Fo = 4.3888... . Thus we want to
choose the option so that our expected sum is

min{ds + d3,ds + 3, E2}.

Analyzing this, we find that if do > 4, we should re-roll both. If do = 3, we should keep both if
ds < 3. If do = 2, then we should keep d3 if d3 = 2; otherwise we should re-roll both. (This is the
surprising part of the optimal strategy: a two is not necessarily keepable by itself: it depends on the
value of the other die.) If do = 1 and d3 = 1 or 2, keep both; otherwise, keep do and re-roll ds.

The calculation of the expected value with three dice can be expressed as

1 & 2261
3; (di + min{dy + dy, dy + 3, Bx}) = S= 5 = 5.233796...
ey

where the sum skips 3, and d; < da < d3 is {4, j, k} sorted in increasing order.
Continuing in this way, the expected value with four dice can be expressed as

/

6
1 16631
@ E d1 + min{dQ 4+ d3+dy,ds +ds+ 3,do + EQ,Eg}) = M = 5.833858...

67
i,7,k,l
0
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68.

where the sum skips 3, and d; < dy < d3 < dy is {4, j, k, [} sorted in increasing order.

Finally, the expected value with five dice can be expressed as

6 ! 5
1 .
E5:@ E <d1+m1n{g dn,dg+d3+d4+3,d2+d3+E2,d2+E3,E4}>

i.gk,lm n=2
=0
13613549985
= = 6.253978525....

where the sum skips 3, and d; < dy < ds < d4 < dj is {1, J, k,l,m} sorted in increasing order.
Thus, the expected score in this game, played with an optimal strategy, is about 6.25398.

But, what is the optimal strategy? It is essentially encoded above, but is there a more simple statement?
A small simplification is made by noting that a sum of integers is less than, say, 4.38888... only if the
sum is less than or equal to 4. So the E; values that appear in the sums above can be replaced by their
integer parts.

It is a tricky strategy to paraphrase. Consider that if you roll 3-3-3-2-2, you should keep all the dice,

but if you roll 3-3-2-2-2, you should re-roll the 2s, since 6 > E3 = 5.233796... . The strategy is not
summarizable to a “this die or less should always be kept on roll i simplicity.

A further question: what is the probability of getting a score of zero? This question has more than
one interpretation: (a) what is the probability of getting a score of zero if played using the “optimal”
strategy above, and (b) what is the probability of getting a score of zero if the player does everything
possible to get a score of zero (i.e., keeps only 3s as long as possible).

(Special thanks to David Korsnack for inspiring me to look into this problem, and for providing some

numerics with which I could compare my calculations.)

Pig In the game of Pig, two players take turns rolling a die. On a turn, a player may roll the die
as many times as they like, provided they have not thrown a one. If they end their turn before rolling
a one, their turn score is the sum of rolls for that turn. If they roll a one, their turn score is zero. At
the end of the turn, their turn score is added to the player’s total score. The first player to reach 100
points wins.

Let’s consider the strategy for playing this game in which the player will roll until their turn score is
at least M. What value of M will maximize their expected turn score? What is the expected value?

We can determine the M which will maximize the expected score be arguing that we should keep
rolling as long as the expected score after rolling is at least as large as our current score. So we should
stop if our score .S satisfies

5
S > 6(5 +4),
which yields S > 20. Since we could equally argue that we should stop only if our score satisfies
5
S > E(S +4),

we conclude that M = 20 and M = 21 are equally good as far as maximizing the expected turn score.

To work out the expected score, we begin with the generating function for a die, with the one excluded:

1 1 1 1 1
po = 6562 + 8:03 + 61‘4 + 6335 + 6:56
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Considering M = 20 for now, we note that to reach 20 will require at least four rolls. Raising pg to
the fourth power, we have

1 1 5 5 35 13 17 5
4 _ 24 , 1 93 9 99 O 9 20, 19 49 | 0 48 9 47
Po= 19967 T3o0” T T324% T1206Y tTazm® T3t Ta”
85 16 5 15 ]‘7 14 ]‘3 13 35 12 5 11 5 10 1 9 1 8
To06” Tt T3007 T304 T1206Y T3t Test T304 T 12067

This polynomial gives the distribution of scores after four rolls, except for the score of zero, the
probability of which we can find as the complement of the sum of all of these probabilities.

Note that, if the score has reached 20 or more, the player stops rolling. So when considering the
situation after five rolls, we must remove the terms with power 20 or higher.

Thus, the distribution after five rolls, given that 20 was not achieved earlier, is given by

Do (2312?;95194‘:312711%184‘5351%17‘*‘é;ixlﬁ+;$15+?};lxl4+?};l$l3+12363512
+324x11+&in10+3;4x9+12196x8>

:1;%1,25 %$24+%$23+%$22 %$21+%$20+%I19 %lefi
+§§%fj+;i%f6+;i%fﬁ+3$8f4+?%%f3+i%?ﬁz+7;6f1+7%6ﬂ0

We thus see more ways the player can reach scores of 20 or above, and we can remove the corre-
sponding terms from the polynomial, and continue in this way until there are no terms left. Since we
must roll at least 2 if we do not roll a one, at most 10 rolls can occur with a threshold of M = 20.

So, in this way, we can work out the distribution of scores (and hence the expected score) for any
threshold M.

Here is PARI/GP code that calculates the expected turn score for any threshold, M, using this method.

p0=1/6xx"6 + 1/6%xx"5 + 1/6%*x"4 + 1/6*x"3 + 1/6*x"2
£ (M) =s=0;p=p0;
while (poldegree (p)>1,
for (j=M, poldegree (p),
s=stjxpolcoeff (p, J);
p=p-polcoeff (p, J)*x"J);
p=p*p0) ;
return (s)

For M = 20 or M = 21, the expected turn score is

492303203

——— = 8.14179%4
60466176 8 7948937

Though the expected values are the same, the distributions are not. For one thing, with M = 20,
the probability of getting zero on a turn is about 0.6245 while with M = 21, the probability is about
0.6412.

What about other values of M?
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69.

Here is a plot of the expected turn score for M ranging from 2 to 100:
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The expected score is above 8 for 17 < M < 24 (and equal to about 7.99718 when M = 25).

The expected score when M = 2 is 10/3 = 3.333.... This is matched closely at M = 65, for which
the expected score is 3.29346..., and M = 64, with an expected score of 3.39364.... An interesting
question: if one player uses M = 2 and the other uses M = 64 or 65, which player will win more
often?

At M = 100, the expected turn score is just above 1, at 1.03693....

Although M = 20 and M = 21 yield the highest expected turn score, this does not mean that these
maximize the probability of winning in an actual game. (More on this in a future problem!)

Suppose we play a game with a die where we roll and sum our rolls. We can stop any time and take
the sum as our score, but if we roll a face we’ve rolled before then we lose everything. What strategy
will maximize our expected score?

We want to roll until the expected sum after rolling is less than our current sum. Let C be our current
sum and S be the set of faces that have been rolled already. Then we should stop if

RS
G O+ZZ¢;6(C+Z)<C.

Using the fact that Z 1 = C, this inequality simplifies to
€S
C(|S|+1) > 21.

After our first roll, |S| = 1 and C' < 6 so C(|S| + 1) < 12. Hence we should roll again. After our
second roll, | S| = 2, so we should stop if C' > 7. After our third roll, |S| = 3, so we should stop if
C > %, that is, if C' > 6. However, if we have made it to our third roll, C' must be at least 6, and so
we should stop at this point.

Thus: Roll twice. If the second roll is not the same as the first, and the sum is less than 7, roll again
and stop; otherwise, stop.
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70.

223 _
With this strategy, the expected score is T 6.194 and the game ends with a zero score with
5 _
bability — = 0.27.
probabpility 18

(Same as previous game, but with two dice.) Suppose we play a game with two dice where we roll and
sum our rolls. We can stop any time and take the sum as our score, but if we roll a sum we’ve rolled
before then we lose everything. What strategy will maximize our expected score?

Let C be our current score, and S be the set of sums rolled so far, so
C=> i
€S
Let p(i) be the probability of rolling a sum of ¢ with a single roll of two dice.

Then, to maximize our expected score, we should stop rolling if the expected score after rolling again
1s less than our current score. That is,

(z)@>o+2) (C+i)<C.

€S €S

This simplifies to
Z p(i)(C+1i) > T. (3.2

€S

When does this occur?

After a single roll 7, the stopping condition is

2rp(r) > 7.

7
3>

One can check as well that, after two rolls, the left-hand side of (3.21) is at most % ~ 6.861 < 7, so
we should always roll at least three times (if we can).

Since the left-hand side maxes out at = 7, with 2rp(r) = £, we should always roll at least twice.

After rolling three times, there are many .S for which we should stop. We should stop after three rolls
if any of the following are true:

« {6,7},{7,8},{7,9},{7,10},0r {8,9} C S

* 2¢ Sand{6,8},{6,9},{6,10},{7,11},{7,12},{8,10},{8,11} C S

* current score is 28 or greater and S # {5,11,12}

* S e{{3,9,10},{4,5,7},{4,5,8},{4,5,9},{4,6,11},{4,8,12},{4,9, 10}, {4,9, 11},

{4,9,12},{4,10,11}, {5,6,11}, {5,6, 12}, {5, 8,12}, {5,9, 10}, {5,9, 11}, {5, 9,12}, {5, 10, 11},

{5.10,12}}
After rolling four times, we should stop unless one of the following is true:

(@) {2,3,4} C Sand7 ¢ S
(b) Sequalsoneof {2,3,5,6},{2,3,5,11},{2,3,5,12},{2,3,10,12}, {2, 3, 11,12}, {2,4, 11,12}
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If we are lucky enough to roll five times, we should stop. With |S| = 5, Z p(7)(C + 4) is minimal
1€S
when S = {2,3,4,5,12}, with the sum being 22 ~ 9.389 > 7.

: 513389
If we apply this optimal strategy, the expected score will be %3555 ~ 14.671611.

With this strategy, the smallest non-zero score that can be attained is 15, and the largest possible score
217495
629856
occuring with probability {550% ~ 0.0722237.

In the optimum strategy described above, the stopping condition was

Zp (C+1i)>T.

1€S

is 39. The probability of zero is ~ (0.345309, and the most likely non-zero score is 21,

The greater than symbol can be replaced with greater-than-or-equals and the resulting strategy will
yield the same expected value, but a very slightly different score distribution.

Interestingly, instead of using this complex strategy, a very good and simple strategy is to always stop

~ 14.502315, not that much
less than the optimal strategy. The range of possible non-zero scores is 9 to 33. The probability of

after three rolls. With this simple strategy, the expected score is

scoring zero is ~ (0.309414 and the most likely non-zero score is 21, as it is with the complex

1296

277
strategy, and this occurs with probability 3388 ~ 0.0712449.

The plots below show the score distribution for the “> 7” strategy in black and the “stop after three
rolls” strategy in blue; the second plot has the values on a logarithmic scale.
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71.

72.
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The simple strategy can be made quite a bit better while keeping it simple by adding a score condition.
If the strategy is to stop rolling if we have rolled at least three times and our score is 16 or greater,

experiments show the expected value is close to 14.6! If we want a strategy based purely on the score,

the best strategy appears to be stopping when the score is at least 18, which yields an expected value
just over 14.3.

Suppose we play a game with a die where we roll and sum our rolls. We can stop any time and take
the sum as our score, but if we roll the same face twice in a row we lose everything. What strategy
will maximize our expected score?

If the last face rolled is » and our current sum is .5, then the expected value of our score if we roll
again is
6

1 5 1

— . O — _ )

5 + GS + 6l Z 1

i=1,i#r

If this is less than S, we should not roll. When is it less than S? It depends on .S and r. Specifically,
if S is greater than the sum of all faces other than r, we should not roll. In other words, if

r+S>21

then rolling will not, on average, increase our score, and so we should stop. With this strategy, the
expected score is about 8.7, with zero scores occurring about 56% of the time. Generalizing to m-

sided dice, we should stop if the current sum plus the last roll exceeds the sum of all faces of the
die.

Suppose we play a game with a die where we roll and sum our rolls as long as we keep rolling larger
values. For instance, we might roll a sequence like 1-3-4 and then roll a 2, so our sum would be 8. If
we roll a 6 first, then we’re through and our sum is 6. Three questions about this game:

(a) What is the expected value of the sum?

(b) What is the expected value of the number of rolls?

(c) If the game is played with an n-sided die, what happens to the expected number of rolls as n
approaches infinity?
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We can consider this game as a Markov chain with an absorbing state. If we consider the state to be
the value of the latest roll, or 7 if the latest roll is not larger than the previous one, then we have the
following transition matrix:

1/6 1/6 1/6
1/6 2/6
/6 1/6 3/6

/6 1/6 4/6 (3.22)
8 1/6 5/6
0

—_

OO OO~
[erNep

—_ = =

OO O~
[e>NerNep)

1/6
1/6
1/6
1/6

0 1
0 1

e

I
OO OO O
OO OO O

Using the notation of Appendix D, we have

0 1/6 1/6 1/6 1/6 1/6

0 0 1/6 1/6 1/6 1/6
= 0 O 0 1/6 1/6 1/6

0 O 0 0 1/6 1/6

0 O 0 0 0 1/6

0 O 0 0 0 0

sothat N = (I — Q)™ lis
1 1/6 7/36 49/216 343/1296 2401/7776
0 1 1/6  7/36 49/216  343/1296
N=|0 0 1 1/6 7/36 49/216
10 0 0 1 1/6 7/36
0 0 0 0 1 1/6
0 0 0 0 0 1
The row sum of NV is
16807/7776
2401/1296
343/216
49/36
7/6
i

and so the expected number of rolls before absorption (i.e., the number of rolls that count in the sum)
is

(1/6) (16807/7776 4 2401/1296 + 343/216 + 49/36 + 7/6 + 1) = 70993 /7776 ~ 1.521626.

We use N to calculate the expected sum as well. If the first roll is a 1, the expected sum will be

1 7 49 343 2401
14+92.2 R I . . —
+ 6 3 36 + 216 5 1296 6 7776

In fact, for any first roll, the expected sum is 6. Hence, the expected sum is 6.

6.

Now, suppose the game is played with an n-sided die. Let E be the expected number of rolls. Let
E(j) be the expected number of rolls if the first roll is j. Then,

; o 1 1
E(j))=1+—-E(G+1)+—-E({J+2)+ -+ —E(n)
n n n
and so

L Bn)

n

1 1
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73.

74.

from which we can conclude

Since E(n) = 1, we have

Thus,

1o 1 & "7 1 (n+1\" [ n
E=—-% E({j)=— 1+ - = —
n; () né( +n> n( n ) j:1<n—|—1>

() (-G ) - )

lim F =e—1=1.718281828459....

n—oo

And so we see that

Suppose we play a game with a die where we roll and add our rolls to our total when the face that
appears has not occurred before, and subtract it from our total if it has.

For example, if we rolled the sequence 1, 3,4, 3, our corresponding totals would be 1,4, 8, 5.

We can stop any time and take the total as our score. What strategy should we employ to maximize
our expected score?

The optimal strategy need only consider what faces have already appeared.

If A is the set of distinct faces which have already appeared, then the expected change C' in the total

on the next roll of the die is ] 1

1<i<6 1<i<6
icA igA

If this is negative, we should stop rolling, since on the next roll we expect to decrease our total, and

any further rolling only makes the situation worse.

Now, C' is negative if the sum of the distinct faces thrown is 11 or more, and positive otherwise.
Hence, to maximize the expected value of our score, we should keep rolling until the sum of distinct
faces thrown is 11 or more.

For example, if we roll 1, 3, 5, 1, 6, then we should stop, with a score of 16.

Experimentally, we can find that this strategy yields an expected score of about 8.7.

Suppose we roll a single die, repeatedly if we like, and sum. We can stop at any point, and the sum
becomes our score; however, if we exceed 10, our score is zero.

What should our strategy be to maximize the expected value of our score? What is the expected score
with this optimal strategy?

What about limits besides 10?
We consider the game first with a limit of 10.
We need to decide, if our current score is n, whether or not we should continue rolling.

Suppose our current score is 10. Then rolling will not help, since our score would become zero. So
we must “stick” (i.e., not roll) if our score is 10.
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Suppose our current score is 9. Then rolling will give us an expected score of

1 5 10
—J10+(=)0o=—<0.

Since the expected value is less than 9, it is better to stick on 9 than to roll.

Suppose our current score is 8. Then rolling will give us an expected score of
! 9+ ! 10 + 1 0= 19 <8
6 6 6) 6
Suppose our current score is 7. Then rolling will give us an expected score of
1 1 1 3 9
-8 =19 -] 10 - )10==<7
()54 (5o () e (§)o-3+

Suppose our current score is 6. Then rolling will give us an expected score of

07+ (0 (e (o Q- 5=

so we should stick on 6.

so we should stick on 8.

so we should stick on 7.

Suppose our current score is 5. Then rolling will give us an expected score of

e (e (oo (o (-3

Since the expected value is greater than 5, we should roll, even though there is a chance that we will
end up with a score of zero.

If our current score is less than 4, then there is no chance that one more roll will result in a score of
zero (i.e., a lower score than the current score), so it is always better to roll.

Hence, the optimal strategy is: roll again if the score is 5 or less, and stick otherwise.

To calculate the expected final score with this strategy, let F/(m) be the expected final score starting
with a current score of m. Then we seek E(0).

If m > 5, E(m) =m.
If m = 5, we have E(5) = %2326 E(i) = %_
Then

6
E(4) = éZE(ZLJri) = ?
=1

6
1 200
E?):* E3 ) = ——
8= gL EG+) =5
6
1 1157
E2)=- E(2 = —
@)= B2+ =5
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1 6803
()= B0+ =g
6
1 40817
EO) = =S B(i) = —=-*
0)=75 () = 5532

Thus, the expected value of the score is 450883127 = 6.99879972565157..., just the tiniest bit less than 7.

What about other limits?
Suppose the limit is k£ (so we lose all points if the score ever exceeeds k).

Then if our current score is n = k — 1, our expected score if we roll is %(n + 1) which is greater than
nif and only if n < %, i.e., n = 0. Thus, should always stop on if our current score is k — 1 or greater.

Suppose our current score is n = k —2. If we roll, our expected score is £ (n+1+n+2) = £(2n+3)
which is greater than n if and only if n < %, i.e., » = 0. So we should always stop if our current score
is k — 2 or greater.

Suppose our current score is n = k—3. Then the expected score if we roll is %(n—l— 14+n+2+n+3) =
é(Sn + 6) which is greater than n if and only if n < 2, i.e., K < 5. Hence, we should stick on k — 3
or greater, unless £ = 4, in which case we should roll on k& — 3.

Suppose our current score is n = k — 4. Then the expected score if we roll is é(n +14+n+2+n+
34 n+4) = (4n + 10) which is greater than n if and only if n < 5, i.e., k < 9. Hence we should
stick on k — 4 or greater, unless £ = 5,6, 7, or 8, in which case we should roll on k£ — 4.

Suppose our current score is n = k — 5. Then the expected score if we roll is é(n +14+n+2+n+
34+ n+4-+n+5) = ¢(5n+ 15) which is greater than n if and only if n < 15, i.e., k < 20. Hence,
we should stick on k& — 5 or greater if £ > 20, and otherwise roll on k£ — 5.

Let k be the limit in our game, and let s be the sticking value, i.e., we should stop rolling if out score
is at or above s. Then, for all £ > 20, the sticking value is £ — 5. For smaller values of &, the s values
are summarized in the table below.

What are the expected scores using this optimal strategy?

For any k, let E(z) be the expected value of our final score if our score is x.

If k = 1, then the expected score is ¢ (1) = £.

If k = 2, then the expected score is ¢ (1) + #(2) = 1.

If k = 3, then the expected score is £(1 + 2+ 3) = 1.

If k = 4, then the expected score is £(2+3 +4) + £(3(2+3+4)) = £ = 1.75.

If k = 5, then the expected score is (2 +3 + 4+ 5) + %(%(2 +3+445)) = % =2.72.

Suppose k = 6. We stick on 3 or greater. Then F(3) = 3, F(4) =4, E(5) = 5, and F(6) = 6. Then
E(2) = ¢(E3) + E(4) + E(5) + E(6)) and E(1) = #(E(2) + E(3) + E(4) + E(5) + E(6)).

Finally, the expected score is

we may set F(z) = 0if x > 7. Then E(j) = %Zle E(j+1) for j = 0,1 and 2. The expected
score is then E(0) = 32T ~ 4.6558642.
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Using the same technique, we have the following table of results.

k s E(0) E(0) approx.
1 1 1/6 0.166666
2 1 172 0.5

3 1 1 1

4 2 T7/4 1.75

5 2 49/18 2.722222
6 3 49/12 4.083333
7 4 3017/648 4.655864
8 5 20629/3888 5.305813
9 5 46991/7776 6.043081
10 6  40817/5832 6.998800
11 7  84035/10368 8.105228
12 8  7695859/839808 9.163831
13 9 101039827/10077696 10.026084
14 10 55084715/5038848 10.932006
15 11 4307852885/362797056 11.874002
16 12 13976066993/1088391168 12.841033
17 13 60156375517/4353564672 13.817729
18 14 1131329591/76527504 14.783307
19 15 7388908661401/470184984576 15.714897
20 15 2611098542647/156728328192 16.660029
50 45 46.666667
100 95 96.666667

The calculations suggest that the expected score approaches k — % as k goes to infinity. Proving that
would be nice.

Let f(k, m) be the expected score of the game with a limit of & where we use the strategy of stopping
on m or greater. We can calculate f(k,m) in PARI/GP with the following code:

f(k, m) = A=vector (k+6); for(i=m,k,A[1]=1);
for(j=1,m-1,A[m-J]=1/6*sum(n=1,6,A[m-Jj+n])); return(l/6*sum(i=1,6,A[i]))

75. Suppose we play a game with a die where we roll and sum our rolls. We can stop any time, and the
sum is our score. However, if our sum is ever a multiple of 10, our score is zero, and our game is over.
What strategy will yield the greatest expected score? What about the same game played with values
other than 10?

Let’s generalize things right away.
Suppose we want to avoid multiples of m. For now, let’s suppose m > 6.

Suppose we have been playing, and our sum is n, and
Em <n<(k+1)m

for some integer k& > 0.

If our score is less than (k + 1)m — 6, then we should certainly roll until it is at least (k + 1)m — 6,
since there is no risk.
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Suppose (k+1)m —6 < n < (k+ 1)m. Should we roll to get past (k + 1)m? There is at leasta 1/6
chance that this will result in a score of zero, and the best our score could be (without risking another
multiple of m) is (k + 2)m — 1. Hence the expected value F of our score with risking one multiple

of m is 5
E < 6((k+2)m -1)
and this is less than (k + 1)m — 6 if
31
k>44 —.
m

Hence, if & > 4 + %, then we should stop rolling if our score, n, is in the interval
Em <n < (k+1)m

and possibly earlier.

Suppose m = 10. Then 4 + % = 7.1, so (with £ = 8 > 7.1) we should definitely stop rolling if our
score is between 84 and 89.

We can then work out an optimal strategy recursively as follows.
Let E(x) be the expected value of our ultimate score if our sum is ever z.

Then E(84) = 84, E(85) = 85, E(86) = 86, F(87) = 87, E(88) = 88, and E(89) = 89 (since we
will stop at any of those scores). We also know E(z) = 0 if z is a positive multiple of m.

6
1
We can then define f(n) = 6 Z E(n + ). Then, if f(n) > n, we should roll when our sum is n
=1

and E(n) = f(n). On the other hand, if f(n) < n, we should stop rolling when our sum is n and
E(n) =n.

In this way, we can calculate £'(n) downward from n = 83 to n = 0, noting whether we stop rolling
or not to create our optimal strategy and the expected value of our strategy.

Writing a little code, we can thus find that we should roll unless the sum is 24 or 25 or greater than
33. With this strategy, the expected score is

162331123011053862884431

= 13.21711859042473....
12281884428029630004432 |21 (11899042475

Applying this same method to other values of m, we have the following table.
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76.

m  stop if expected value

6 n>19 7.221451623108286812
7 n>15 8.585032818442838864
8 mn=18o0rn > 26 10.12982919499704393
9 n=21,220rn > 30 11.67916132417996147
10 n=24,250orn > 33 13.21711859042473150
11 n=27,280rn > 38 14.72823564563309959
12 n=30,31orn > 42 16.27534383168068736
13 n=33,35,350rn > 46 17.90549414976900364
14 n=36,37,380rn > 50 19.43362157318550401
15 n=239,40,410orn > 54 20.97094434047380285

16 n =42,43,44,58,59,60,61,620rn > 74 22.51571524339529867
17 n = 45,46,47,62,63,64,65,66 orn > 79  24.07230800164414883
18 n = 48,49,50,66,67,68,69,70 orn > 84  25.64211352850069779
19 n=51,52,53,70,71,72,73,74orn > 89  27.21360753502956739
20 n =54,55,56,74,75,76,78 orn > 94 28.75912955252540060

For 2 < m <5, it is probably best to attack each one separately, which perhaps I will do some other
time.

Suppose we play a game with a die in which we use two rolls of the die to create a two digit number.
The player rolls the die once and decides which of the two digits they want that roll to represent. Then,
the player rolls a second time and this determines the other digit. For instance, the player might roll
a 5, and decide this should be the “tens” digit, and then roll a 6, so their resulting number is 56.

What strategy should be used to create the largest number on average? What about the three digit
version of the game?

A strategy in this game is merely a rule for deciding whether the first roll should be the “tens” digit or
the “ones” digit. If the first roll is a 6, then it must go in the “tens” digit, and if it’s a 1, then it must
go in the “ones” digit. This leaves us with what to do with 2,3,4 and 5. If the first roll is b, then using
it as the “ones” digit results in an expected number of % -10 4 b. Using it as the “tens” digit results in
an expected number of 100 + % So, when is 10b + % > % -10 + b? When b > 4. Thus, if the first
roll is 4, 5 or 6, the player should use it for the “tens” digit. With this strategy, the expected value of
the number is

1
6(63.5 +53.5 4+ 43.5 4+ 38 4+ 37 4 36) = 45.25.

In the three-digit version of the game, once we have decided what to do with the first roll, we’ll be
done, since we will then be in the two-digit case which we solved above. Note this is obviously true
if we place the first roll in the “hundreds” digit. If we place the first roll in the “ones” digit, then the
strategy to maximize the resulting number is the same as the two-digit case, simply multiplied by a
factor of ten. If we place the first roll in the “tens” digit, then our strategy is to put the next roll b in
the “hundreds” digit if

1006+ 3.5 > 350 + b

i.e., if b > 4. Thus we have the same strategy in all three cases: put the second roll in the largest digit
if it is at least 4.

Now, if the first roll, b, is placed in the “hundreds” digit, then the expected value will be 100b+ 45.25.
If the first roll is placed in the “ones” digit, then the expected value will be 452.5 + b. If the first roll
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is placed in the “tens” digit, then the expected value will be
10b 4 (351 + 352 + 353 + 403.5 + 503.5 + 603.5) /6 = 427.75 + 10b.

Our strategy thus comes down to maximizing the quantities 1000+45.25,427.75+10b, and 452.5+b.
From the graph below, we see that 1000 4 45.25 is the largest when b > 5; 427.75 + 10b is largest
when 3 < b < 4, and 452.5 + b is largest when b < 3. Thus our strategy for the first roll is this: if it
is at least 5, put it in the “hundreds” digit; if it is 3 or 4, put it in the “tens” digit; otherwise, put it in
the ones digit. If the second roll is 4, 5, or 6, place it in the largest available digit.

600 |- b

550 |- a

500 - a

450 [ N

400 |- N

350 - a

300 [ A

250 | N

200 a

2 3 4 5

The expected value using this strategy is thus

(645.25 4 545.25 + (40 + 427.75) + (30 + 427.75) + (452.5 + 2) + (452.5 4 1)) /6 = 504.
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Chapter 4

Problems for the future

Here are some problems that I intend to add to this collection some time in the future, as soon as I get
around to writing decent solutions.

1. You roll a single die. You can roll it as many times as you like (or maybe we put an upper bound, like
10 or 100). When you stop, you will recieve a prize proportional to your average roll. When should
you stop? (Experiments indicate it is when your average is greater than about 3.8.)

2. Suppose you have a fair die, but you do not know how many faces it has. You roll the die five (say)
times. What is the best estimate for the number of sides based on the rolls?

3. More Drop Dead: probability of getting zero? probability of any particular value?
4. More Threes: probability of getting any particular score?

5. Law of Large Numbers related: What is the expected number of rolls of a single die needed until there
is @ 99% chance that the proportion of 2s (say) thrown is within some specified interval around 1/6
(e.g,1/6 —0.01 <r<1/6+0.017?

6. For every composite n, there appear to be pairs of “weird” dice with n sides (i.e. a pair of dice not
numbered in the usual way with sum probabilities equal to the standard dice). Prove this. For many
n, there are many such pairs. Give useful bounds on the number of such pairs in terms of n.

For n = 4k + 2, it appears that the dice
{1,2,2,3,3,...,2k+3, 2k+3, 2k+4},{1,3,5, ..., 2k+1, 2k+2, 2k+3, ...,n—1,n,n+2,n+4, ..., 6k+2}

do the trick.
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Appendix A

Dice sum probabilities

Sums of 2, 6-Sided Dice

Sum

Probability

1/36

2/36 =1/18

3/36 =1/12

4/36 =1/9

5/36

6/36 =1/6

5/36

O |0 QN | N |~ W(b

4/36 =1/9

10

3/36 =1/12

11

2/36 =1/18

12

1/36

Sums of 3, 6-Sided Dice

Sum  Probability

3 1/216

4 3216 = 1/72

5 6/216 = 1/36

6 10/216 = 5/108
7 15/216 =5/72
8 21/216 =7/72
9 25/216

10 27/216 =1/8
11 27/216 =1/8
12 25/216

13 21/216 =7/72
14 15/216 =5/72
15 10/216 = 5/108
16 6/216 = 1/36
17 3/216 = 1/72
18 1/216 = 1/216
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Appendix B

Handy Series Formulas

For |r| < 1,
S = : a4 (B.1)
n=0 -r
Forr # 1,
N a(l — N+
doart=——r-—— (B.2)
1—7r
n=0
For |r] < 1,
= T
nr’* = (B.3)
2" = Ty
For r # 1,
a n  NrNE2Z (N )Nt 4y PN (N —1) 41
Zn?" = 3 = 2 (B.4)
1 (1 — 7‘) (1 — 7")
For |r| < 1,
> r(14+k—kr)
kr"= ———~ B.5
For |r| < 1,
o T(L4T)
Z n’r’t = o —— (B.6)
n=1 (1 T)
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Appendix C

Dice Sums and Generating Functions

Very often in mathematics a good choice of notation can take you a long way. An example of this is the following
method for representing sums of dice. Suppose we have an n-sided die, with sides 1, 2, ..., n that appear with proba-
bility p1, pa, ..., Pn, respectively. Then, if we roll the die twice and add the two rolls, the probability that the sum is &
is given by

n n—~k
ijpk—j = Z PjiPk—j (C.1)
j=1 j=k—1
ifwesayp; =0if¢ <lor¢ > n.
Now consider the following polynomial:
P =piz+pa®+- - +pya” (C.2)
If we square P, we get
P? = ap2® + asz® + - - - + agpa®” (C.3)
where ag, for k=2, 3,..., 2n, is given by
n—k
ar= Y k- (C4)
j=k—1

In other words, the probability of rolling the sum of k is the same as the coefficient of z* in the polynomial given by
squaring the polynomial P.
Here’s an example. Suppose we consider a standard 6-sided die. Then

1 1 1 1 1 1 .

and so

P2 = 2+27333+ﬁ+§+£+67$7+57m$+@+3x10+2x11+L12 (C6)

6 36 36 36 36 36 36 36 36 36 36 '
= j+£3+£4+£5+57m6+£7+57ms+£9+x710+ﬁ+x712 (C7)
36 18 12 9 36 6 36 9 12 18 36 '

‘ 8

8 W

And so, we see that the probability of rolling a sum of 9, for instance, is 1/9.
For two different dice the method is the same. For instance, if we roll a 4-sided die, and a 6-sided die, and sum
them, the probability that the sum is equal to & is give by the coefficient on * in the polynomial

x a2 23 gzt x  xz a3 xt b g
R - F A (C3)

which, when expanded, is
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Notice that this can be written as

1
o (2 +22° + 32" +42° +42° + 427 + 32% + 227 + 2'7) (C.10)

In general, a fair n-sided die can be represented by the polynomial
1
—(z+2®+2%+- - +2") (C.11)
n

With this notation, many questions about dice sums can be transformed into equivalent questions about polyno-
mials. For instance, asking whether or not there exist other pairs of dice that give the same sum probabilities as a pair
of standard dice is the same as asking: in what ways can the polynomial

(x4 22+ 2t + .. +2™)?

be factored into two polynomials (with certain conditions on the degrees and coefficients of those polynomials)?

Using more general terminology, such polynomials are called generating functions. They can be applied in lots
of situations involving discrete random variables, including sitations in which the variables take on infinitely many
values: in such cases, the generating function will be a power series.
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Appendix D

Markov Chain Facts

A Markov chain is a mathematical model for describing a process that moves in a sequence of steps through a set
of states. A finite Markov chain has a finite number of states, {s1, S2, ..., s, }. When the process is in state s;, there
is a probability p;; that the process will next be in state s;. The matrix P = (p;;) is called the transition matrix for
the Markov chain. Note that the rows of the matrix sum to 1.

The ij-th entry of P (i.e. the k-th power of the matrix P) gives the probability of the process moving from state
1 to state j in exactly k steps.

An absorbing state is one which the process can never leave once it is entered. An absorbing chain is a chain
which has at least one absorbing state, and starting in any state of the chain, it is possible to move to an absorbing
state. In an absorbing chain, the process will eventually end up in an absorbing state.

Let P be the transition matrix of an absorbing chain. By renumbering the states, we can always rearrange P into
canonical form:

Q R
P =
(0] J

where J is an identity matrix (with 1’s on the diagonal and 0’s elsewhere) and O is a matrix of all zeros. () and R are
non-negative matrices that arise from the transition probabilities between non-absorbing states.

The series N = I + Q + Q% + Q3 + ... converges, and N = (I — Q)~!. The matrix N gives us important
information about the chain, as the following theorem shows.

Theorem 1 Let P be the transition matrix for an absorbing chain in canonical form. Let N = (I — Q)~L. Then:

e The ij-th entry of N is the expected number of times that the chain will be in state j after starting in state 1.

o The sum of the i-th row of N gives the mean number of steps until absorbtion when the chain is started in state
i.

o The ij-th entry of the matrix B = N R is the probability that, after starting in non-absorbing state 1, the process
will end up in absorbing state j.

An ergodic chain is one in which it is possible to move from any state to any other state (though not necessarily
in a single step).

A regular chain is one for which some power of its transition matrix has no zero entries. A regular chain is
therefore ergodic, though not all ergodic chains are regular.

Theorem 2 Suppose P is the transition matrix of an ergodic chain. Then there exists a matrix A such that

_ P+P24P34...4 Pk
lim =
k—oc0 k

A

For regular chains,
lim P* = A.

k—o0
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The matrix A has each row the same vector a = (aj,as,...,a,). One way to interpret this is to say that the
long-term probability of finding the process in state ¢ does not depend on the initial state of the process.
The components a1, as, ..., a, are all positive. The vector a is the unique vector such that

ap+ax+---+a,=1

and
aP=a
For this reason, a is sometimes called the fixed point probability vector.
The following theorem is sometimes called the Mean First Passage Theorem.

Theorem 3 Suppose we have a regular Markov chain, with transition matrix P. Let E = (e;;) be a matrix where,
fori # j, e;j is the expected number of steps before the process enters state j for the first time after starting in state 1,
and e;; is the expected number of steps before the chain re-enters state i. Then

E=(I-Z+JZ)D

where Z = (I — P — A)"L A = klim P* 7' is the diagonal matrix whose diagonal entries are the same as Z, J is
;— 00
the matrix of all 1'’s, and D is a diagonal matrix with D;; = 1/A;.
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Appendix E

Linear Recurrence Relations

Here’s a useful theorem:
Theorem 2 Consider the linear recurrence relation
Ty = A1Tp—1 + A2Tp—2 + - + Q. (E.1)

If the polynomial equation (known as the characteristic equation of the recurrence relation)

1 2

g™ — e —a, =0 (E.2)

" —arx™”
has k distinct roots r1, ...y, then the recurrence relation E.I has as a general solution
Tp =177 + Cory + -+ cpTy. (E.3)
for some constants c1, . . . , Ck.

Proof: We can prove this with a bit of linear algebra, but we’ll do that some other time.
Example: May as well do the old classic. The Fibonacci numbers are defined by

fO = ]-7f1 = 1; andfn = fn—l +fn—2 forn > 1.

The characteristic equation is
- —-1=0

which has roots

1+5 1-5

r = B al’ld’l”gz D)
So n n
1 1-—
fn—A< +\/5> +B< \/5>
2 2
for constants A and B. Since
fo=1=A+B

and

f1:1:A+B+§(A—B)

we conclude that
1 -1
A= + V5 and B = + V5

24/5 25

(1 + \/g)n+1 . (1 o \/g)nJrl
2n+1\/5 '

so that

.fn:
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